172 5. Further Determinant Theory
5.1.2 The Generalized Geometric Series and Eulerian
Polynomials
Notes on the generalized geometric series ψn(x) and the Eulerian
polynomialsAn(x) are given in Appendix A.6.
An(x)=(1−x)n+1
ψn(x). (5.1.2)Theorem (Lawden).
Ann!x=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
11 −x1 /2! 1 1 −x1 /3! 1 /2! 1 1 −x....................................1 /(n−1)! 1/(n−2)! ··· 11 −x1 /n!1/(n−1)! ··· 1 /2! 1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
The determinant is a Hessenbergian.
Proof. It is proved in the section on differences (Appendix A.8) that
∆
m
ψ 0 =m
∑s=0(−1)
m−s(
ms)
ψs=xψm. (5.1.3)Put
ψs=(−1)s
s!φs. (5.1.4)Then,
m− 1
∑s=0φs(m−s)!+(1−x)φm=0,m=1, 2 , 3 ,.... (5.1.5)In some detail,
φ 0 +(1−x)φ 1 =0,φ 0 /2! +φ 1 +(1−x)φ 2 =0,φ 0 /3! +φ 1 /2+φ 2 +(1−x)φ 3 =0,...........................................................φ 0 /n!+φ 1 /(n−1)! +φ 2 /(n−2)! +···+φn− 1 +(1−x)φn=0.(5.1.6)
When thesenequations in the (n+ 1) variables φr,0≤ r ≤ n, are
augmented by the relation
(1−x)φ 0 =x, (5.1.7)the determinant of the coefficients is triangular so that its value is
(1−x)
n+1
. Solving the (n+ 1) equations by Cramer’s formula (Sec-
tion 2.3.5),