174 5. Further Determinant Theory
5.1.3 Orthogonal Polynomials
Determinants which represent orthogonal polynomials (Appendix A.5)
have been constructed using various methods by Pandres, R ̈osler, Yahya,
Stein et al., Schleusner, and Singhal, Frost and Sackfield and others. The
following method applies the Rodrigues formulas for the polynomials.
LetAn=|aij|n,where
aij=(
j− 1i− 1)
u(j−i)
−(
j− 1i− 2)
v(j−i+1)
,u(r)
=Dr
(u),etc.,u=vy′y=v(logy)′. (5.1.9)
In some detail,
An=∣
∣
∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
uu′
u′′
u′′′
··· u(n−2)
u(n−1)−vu−v′
2 u′
−v′′
3 u′′
−v′′′
··· ··· ···−vu− 2 v′
3 u′
− 3 v′′
··· ··· ···−vu− 3 v′
··· ··· ···−v ··· ··· ···............................−vu−(n−1)v′∣
∣
∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
(5.1.10)
Theorem.
a.A(n+1)
n+1,n=−A′
n,b.An=
v
n
D
n
(y)y.
Proof. ExpressAnin column vector notation:
An=∣
∣C
1 C 2 C 3 ···Cn∣
∣
n,
where
Cj=[
a 1 ja 2 ja 3 j···aj+1,jOn−j− 1]T
n(5.1.11)
whereOrrepresents an unbroken sequence ofrzero elements.
LetC
∗
j
denote the column vector obtained by dislocating the elementsofCjone position downward, leaving the uppermost position occupied by
a zero element:
C
∗
j=[
Oa 1 ja 2 j···ajjaj+1,jOn−j− 2]T
n. (5.1.12)
Then,
C
′
j+C
∗
j=
[
a′
1 j
(a′
2 j
+a 1 j)(a′
3 j
+a 2 j)···(a′
j+1,j
+ajj)aj+1,jOn−j− 2]T
n