4 1. Determinants, First Minors, and Cofactors
=(−1)
n−i
Mij(e′
1
···e′
j− 1
)(e′
j
···e′
n− 1
)ej=(−1)
n−i
Mij(e 1 ···ej− 1 )(ej+1···en)ej=(−1)
i+j
Mij(e 1 e 2 ···en). (1.3.10)Now,ejcan be regarded as a particular case ofxias defined in (1.2.1):
ej=n
∑k=aikek,where
aik=δjk.Hence, replacingxibyejin (1.2.3),
x 1 ···xi− 1 ejxi+1···xn=Aij(e 1 e 2 ···en), (1.3.11)where
Aij=∑
σna 1 k
1
a 2 k
2
···aik
i
···ank
n,
where
aiki=0 ki=j=1 ki=j.Referring to the definition of a determinant in (1.2.4), it is seen thatAijis
the determinant obtained from|aij|nby replacing rowiby the row
[0... 010 ...0],
where the element 1 is in columnj.Aijis known as the cofactor of the
elementaijinAn.
Comparing (1.3.10) and (1.3.11),Aij=(−1)i+j
Mij. (1.3.12)Minors and cofactors should be writtenM
(n)
ij
andA(n)
ij
but the parameterncan be omitted where there is no risk of confusion.
Returning to (1.2.1) and applying (1.3.11),x 1 x 2 ···xn=x 1 ···xi− 1(
n
∑k=aikek)
xi+1···xn=
n
∑k=aik(x 1 ···xi− 1 ekxi+1···xn)=
[
n
∑k=aikAik]
e 1 e 2 ···en. (1.3.13)