178 5. Further Determinant Theory
6.Prove that the determinantAnin (5.1.10) satisfies the relationAn+1=vA′
n
+(u−nv′
)An.Putv= 1 to getAn+1=A′
n
+A 1 AnwhereAn=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
uu
′
u
′′
u
′′′
···− 1 u 2 u
′
3 u
′′
···− 1 u 3 u
′
···− 1 u ······ ···∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ nThese functions appear in a paper by Yebbou on the calculation ofdetermining factors in the theory of differential equations. Yebbou usesthe notationα
[n]
in place ofAn.5.2 The Generalized Cusick Identities
The principal Cusick identity in its generalized form relates a particular
skew-symmetric determinant (Section 4.3) to two Hankelians (Section 4.8).
5.2.1 Three Determinants..................
Letφrandψr,r≥1, be two sets of arbitrary functions and define three
power series as follows:
Φi=∞
∑r=iφrtr−i
,i≥1;Ψi=∞
∑r=iψrtr−i
,i≥1;Gi=ΦiΨi. (5.2.1)Let
Gi=∞
∑j=i+1aijtj−i− 1
,i≥ 1. (5.2.2)Then, equating coefficients oft
j−i− 1
,aij=j−i
∑s=1φs+i− 1 ψj−s,i<j. (5.2.3)