5.3 The Matsuno Identities 191Hence, if
aij={
uij,j=ix−xi
1 −x
2
i,j=i,then
An=|aij|n=xn. (5.3.13)
Exercises
1.LetAndenote the determinant defined in (5.3.9) and letBn=|bij|n,wherebij={
2
xi−xj,j=ix+1
xi,j=i,where, as forAn(x), thexidenote the zeros of the Laguerre polynomial.Prove thatBn(x−1)=2n
An(
x2
)
and, hence, prove thatBn(x)=(x+1)n
.2.LetA
(p)
n
=|a(p)
ij
|n,wherea(p)
ij=
up
ij
,j=ix−∑nr=1
r=iup
ir,j=i,uij=1
xi−xj=−ujiand thexiare the zeros of the Hermite polynomialHn(x). Prove thatA
(2)
n=
n
∏r=1[x−(r−1)],A
(4)
n =n
∏r=1[
x−1
6
(r2
−1)