5.7 The One-Variable Hirota Operator 223Proof. First proof(Caudrey). The Hessenbergian satisfies the recurrence
relation (Section 4.6)
En+1=n
∑r=0(
nr)
ur+1En−r. (5.7.7)Let
Fn=H
n
(f, g)fg,f=f(x),g=g(x),F 0 =1. (5.7.8)The theorem will be proved by showing that Fn satisfies the same
recurrence relation asEnand has the same initial values.
LetK=
e
zH
(f,g)
fg
∑∞n=0z
nn!H
n
(f,g)
fg∑∞
n=0z
n
Fn
n!.
(5.7.9)
Then,
∂K
∂z=
∞
∑n=1zn− 1
Fn(n−1)!(5.7.10)
=
∞
∑n=0z
n
Fn+1n!. (5.7.11)
From the lemma and (5.7.6),
K=
f(x+z)g(x−z)f(x)g(x)= exp[
1
2{φ(x+z)+φ(x−z)+ψ(x+z)−ψ(x−z)− 2 φ(x)}]
. (5.7.12)
Differentiate with respect toz, refer to (5.7.11), note that
Dz(φ(x−z)) =−Dx(φ(x−z))etc., and apply the Taylor relations (5.7.2) from the previous section. The
result is
∞
∑n=0z
n
Fn+1n!=D
[
1
2{φ(x+z)−φ(x−z)+ψ(x+z)+ψ(x−z)}]
K
=
[
∞
∑n=0z2 n+1
D2 n+2
(φ)(2n+ 1)!+
∞
∑n=0z2 n
D2 n+1
(ψ)(2n)!]
K
=
[
∞
∑n=0z2 n+1
u 2 n+2(2n+ 1)!+
∞
∑n=0z2 n
u 2 n+1(2n)!