5.8 Some Applications of Algebraic Computing 231
5.8.4 Hankel Determinants with Symmetric Toeplitz Elements
The symmetric Toeplitz determinantTn(Section 4.5.2) is defined as follows:
Tn=|t|i−j||n,
with
T 0 =1. (5.8.13)
For example,
T 1 =t 0 ,
T 2 =t
2
0
−t
2
1
,
T 3 =t
3
0 −^2 t 0 t
2
1 −t 0 t
2
2 +2t
2
1 t 2 , (5.8.14)
etc. In each of the following three identities, the determinant on the left
is a Hankelian with symmetric Toeplitz elements, but when the rows
or columns are interchanged they can also be regarded as second-order
subdeterminants of|T|i−j||n, which is a symmetric Toeplitz determinant
with symmetric Toeplitz elements. The determinants on the right are
subdeterminants ofTnwith a common principal diagonal.
∣
∣
∣
∣
T 0 T 1
T 1 T 2
∣
∣
∣
∣
=−|t 1 |
2
,
∣
∣
∣
∣
T 1 T 2
T 2 T 3
∣
∣
∣
∣
=−
∣
∣
∣
∣
t 1 t 0
t 2 t 1
∣
∣
∣
∣
2 , ∣ ∣ ∣ ∣
T 2 T 3
T 3 T 4
∣
∣
∣
∣
=−
∣ ∣ ∣ ∣ ∣ ∣
t 1 t 0 t 1
t 2 t 1 t 0
t 3 t 2 t 1
∣ ∣ ∣ ∣ ∣ ∣
2
. (5.8.15)
Conjecture.
∣
∣
∣
∣
Tn− 1 Tn
Tn Tn+1
∣
∣
∣
∣
=−
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
t 1 t 0 t 1 t 2 ··· tn− 2
t 2 t 1 t 0 t 1 ··· tn− 3
t 3 t 2 t 1 t 0 ··· tn− 4
t 4 t 3 t 2 t 1 ··· tn− 5
··· ··· ··· ··· ··· ···
tn tn− 1 tn− 2 tn− 3 ··· t 1
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
2
n
.
Other relations of a similar nature include the following:
∣
∣
∣
∣
T 0 T 1
T 2 T 3
∣
∣
∣
∣
=
∣ ∣ ∣ ∣ ∣ ∣
t 0 t 1 t 2
t 1 t 0 t 1
t 2 t 1
∣ ∣ ∣ ∣ ∣ ∣
, ∣ ∣ ∣ ∣ ∣ ∣
T 1 T 2 T 3
T 2 T 3 T 4
T 3 T 4 T 5
∣ ∣ ∣ ∣ ∣ ∣
has a factor
∣ ∣ ∣ ∣ ∣ ∣
t 0 t 1 t 2
t 1 t 2 t 3
t 2 t 3 t 4