242 6. Applications of Determinants in Mathematical Physics
Since detP=1,
P
− 1
=
1
φ
[
φ
2
+ψ
2
−ψ
−ψ 1
]
,
∂P
∂ρ
=
1
φ
2
[
−φρ φψρ−ψφρ
φψρ−ψφρ φ
2
φρ+2φψψρ−ψ
2
φρ
]
,
∂P
∂ρ
P
− 1
=
M
φ
2
,
∂P
∂z
P
− 1
=
N
φ
2
,
where
M=
[
−(φφρ+ψψρ) ψρ
(φ
2
−ψ
2
)ψρ− 2 φψφρ φφρ+ψψρ
]
andNis the matrix obtained fromMby replacingφρbyφzandψρbyψz.
The equation above (6.2.6) can now be expressed in the form
M
ρ
−
2
φ
(φρM+φzN)+(Mρ+Nz) = 0 (6.2.7)
where
φρM+φzN=
−
{
φ(φ
2
ρ
+φ
2
z
)
+ψ(φρψρ+φzψz)
}
{φρψρ+φzψz}
{
(φ
2
−ψ
2
)(φρψρ+φzψz)
− 2 φψ(φ
2
ρ
+φ
2
z
)
}{
φ(φ
2
ρ
+φ
2
z
)
+ψ(φρψρ+φzψz)
}
,
Mρ+Nz
=
−
{
φ(φρρ+φzz)+ψ(ψρρ+ψzz)
+φ
2
ρ+φ
2
z+ψ
2
ρ+ψ
2
z
}
{ψρρ+ψzz}
{
(φ
2
−ψ
2
)(ψρρ+ψzz)− 2 φψ(φρρ+φzz)
− 2 ψ(φ
2
ρ+φ
2
z+ψ
2
ρ+ψ
2
z)
}{
φ(φρρ+φzz)+ψ(ψρρ+ψzz)
+φ
2
ρ+φ
2
z+ψ
2
ρ+ψ
2
z
}
The Einstein equations can now be expressed in the form
[
f 11 f 12
f 21 f 22
]
=0,
where
f 12 =
1
φ
[
φ
(
ψρρ+
1
ρ
ψρ+ψzz
)
−2(φρψρ+φzψz)
]
=0,
f 11 =−ψf 12 −
[
φ
(
φρρ+
1
ρ
φρ+φzz
)
−φ
2
ρ
−φ
2
z
+ψ
2
ρ
+ψ
2
z
]
=0,
f 21 =(φ
2
−ψ
2
)f 12 − 2 ψ
[
φ
(
φρρ+
1
ρ
φρ+φzz
)
−φ
2
ρ−φ
2
z+ψ
2
ρ+ψ
2
z
]
=0,
f 22 =−f 11 =0,