Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

242 6. Applications of Determinants in Mathematical Physics


Since detP=1,

P

− 1
=

1

φ

[

φ

2

2
−ψ

−ψ 1

]

,

∂P

∂ρ

=

1

φ
2

[

−φρ φψρ−ψφρ

φψρ−ψφρ φ

2
φρ+2φψψρ−ψ

2
φρ

]

,

∂P

∂ρ

P

− 1
=

M

φ
2

,

∂P

∂z

P

− 1
=

N

φ
2

,

where


M=

[

−(φφρ+ψψρ) ψρ


2
−ψ
2
)ψρ− 2 φψφρ φφρ+ψψρ

]

andNis the matrix obtained fromMby replacingφρbyφzandψρbyψz.


The equation above (6.2.6) can now be expressed in the form

M

ρ


2

φ

(φρM+φzN)+(Mρ+Nz) = 0 (6.2.7)

where


φρM+φzN=






{

φ(φ
2
ρ

2
z

)

+ψ(φρψρ+φzψz)

}

{φρψρ+φzψz}

{

2
−ψ
2
)(φρψρ+φzψz)

− 2 φψ(φ
2
ρ

2
z

)

}{

φ(φ
2
ρ

2
z

)

+ψ(φρψρ+φzψz)

}





,

Mρ+Nz


=




{

φ(φρρ+φzz)+ψ(ψρρ+ψzz)


2
ρ+φ

2
z+ψ

2
ρ+ψ

2
z

}

{ψρρ+ψzz}
{

2
−ψ

2
)(ψρρ+ψzz)− 2 φψ(φρρ+φzz)

− 2 ψ(φ

2
ρ+φ

2
z+ψ

2
ρ+ψ

2
z)

}{

φ(φρρ+φzz)+ψ(ψρρ+ψzz)


2
ρ+φ

2
z+ψ

2
ρ+ψ

2
z

}



The Einstein equations can now be expressed in the form


[
f 11 f 12

f 21 f 22

]

=0,

where


f 12 =


1

φ

[

φ

(

ψρρ+

1

ρ

ψρ+ψzz

)

−2(φρψρ+φzψz)

]

=0,

f 11 =−ψf 12 −


[

φ

(

φρρ+

1

ρ

φρ+φzz

)

−φ

2
ρ
−φ

2
z

2
ρ

2
z

]

=0,

f 21 =(φ


2
−ψ

2
)f 12 − 2 ψ

[

φ

(

φρρ+

1

ρ

φρ+φzz

)

−φ

2
ρ−φ

2
z+ψ

2
ρ+ψ

2
z

]

=0,

f 22 =−f 11 =0,

Free download pdf