250 6. Applications of Determinants in Mathematical Physics
(A
ij
)′
=−∑
recru
Arj∑
secsu
Ais
, (6.4.4)2
∑
rbrcrArr
+∑
r,se(cr+cs)u
Ars
=2∑
rcr, (6.4.5)2
∑
rbrcrAir
Arj
+∑
recru
Arj∑
secsu
Ais
=(ci+cj)Aij. (6.4.6)
Put
φi=∑
secsu
Ais. (6.4.7)
Then (6.4.4) and (6.4.6) become
(A
ij
)′
=−φiφj, (6.4.8)2
∑
rbrcrAir
Arj
+φiφj=(ci+cj)Aij. (6.4.9)
Eliminating theφiφjterms,
(A
ij
)′
+(ci+cj)Aij
=2∑
rbrcrAir
Arj
,[
e(ci+cj)u
Aij]′
=2e(ci+cj)u∑
rbrcrAir
Arj. (6.4.10)
Differentiating (6.4.3),
(logA)′′
=∑
i,j[
e(ci+cj)u
Aij]′
=2
∑
rbrcr∑
ieciu
Air∑
jecju
Arj=2
∑
rbrcrφ2
r. (6.4.11)
Replacingsbyrin (6.4.7),
eciu
φi=∑
re(ci+cr)u
Air
,(
ecju
φi)′
=2
∑
rbrcr(
eciu
Air)∑
jecju
Arj=2
∑
rbrcrφreciu
Air
,φ′
i+ciφi=2∑
rbrcrφrAir
.Interchangeiandr, multiply bybrcrA
rj
, sum overr, and refer to (6.4.9):
∑rbrcrArj
(φ′
r
+crφr)=2∑
ibiciφi∑
rbrcrAir
Arj