252 6. Applications of Determinants in Mathematical Physics
=2
∑
rbrcrφr∑
jecju
Arj
+2∑
rbrcr∑
jφre
cju
A
rjcj− 1=2
∑
rbrcrφ2
r−F′= (logA)′′
−F′
, (6.4.18)R=2
∑
je
cjucj− 1∑
rbrcrφ′
rArj=2
∑
jecjucj− 1∑
rbrcrφr[cjArj
−φrφj]=Q−P. (6.4.19)
Hence, eliminatingP,Q, andRfrom (6.4.16)–(6.4.19),
d2
Fdu
2− 2
dFdu+2F(logA)′′
=0. (6.4.20)Put
F=eu
y. (6.4.21)Then, (6.4.20) is transformed into
d2
ydu^2−y+2yd2du^2(logA)=0. (6.4.22)Finally, putu=ωεx,(ω
2
=−1). Then, (6.4.22) is transformed intod
2
ydx
2+ε2
y+2yd
2dx
2(logA)=0,which is identical with (6.4.1), the Kay–Moses equation. This completes
the proof of the theorem.
6.5 The Toda Equations......................
6.5.1 The First-Order Toda Equation...........
Define two Hankel determinants (Section 4.8)AnandBnas follows:
An=|φm|n, 0 ≤m≤ 2 n− 2 ,Bn=|φm|n, 1 ≤m≤ 2 n− 1 ,A 0 =B 0 =1. (6.5.1)
The algebraic identities
AnB(n+1)
n+1,n−BnA(n+1)
n+1,n+An+1Bn−^1 =0, (6.5.2)Bn− 1 A(n+1)
n+1,n
−AnB(n)
n,n− 1
+An− 1 Bn= 0 (6.5.3)