6.5 The Toda Equations 257whereAnandBnare Hankelians defined as
An=|φm|n, 0 ≤m≤ 2 n− 2 ,Bn=|φm|n, 1 ≤m≤ 2 n− 1 ,φ′
m=(m+1)φm+1.Proof.
B
(n)
1 n=(−1)
n+1
A(n)
11,
A
(n+1)
1 ,n+1=(−1)
n
Bn. (6.5.10)It follows from Theorems 4.35 and 4.36 in Section 4.9.2 on derivatives of
Turanians that
D(An)=−(2n−1)A(n+1)
n+1,n,D(Bn)=− 2 nB(n+1)
n,n+1,
D(A
(n)
11 )=−(2n−1)A(n+1)
1 ,n+1;1n,D(B
(n)
11
)=− 2 nB(n+1)
1 ,n+1;1,n. (6.5.11)
The algebraic identity in Theorem 4.29 in Section 4.8.5 on Turanians is
satisfied by bothAnandBn.
B
2
n
y′
2 n− 1
=BnD(B(n)
11)−B
(n)
11
D(Bn)=2n[
B
(n)
11B
(n+1)
n,n+1
−BnB(n+1)
1 ,n+1;1n]
=2nB(n)
1 nB(n+1)
1 ,n+1=− 2 nA(n)
11A
(n+1)
11.
Applying the Jacobi identity,
A
(n)
11A
(n+1)
11
(y 2 n−y 2 n− 2 )=An+1A(n)
11
−AnA(n+1)
11=An+1A(n+1)
1 ,n+1;1,n+1−A
n+1
n+1,n+1A
(n+1)
11=−
[
A
(n+1)
1 ,n+1] 2
=−B
2
n.Hence,
y′
2 n− 1
(y 2 n−y 2 n− 2 )=2n,which proves the theorem whennis odd.
[
A
(n+1)
1 ,n+1] 2
y′
2 n=A(n+1)
11
D(An+1)−An+1D(A(n+1)
11)
=(2n+1)[
An+1A(n+2)
1 ,n+2;1,n+1−A(n+1)
11 A(n+2)
n+2,n+1]
=−(2n+1)A(n+1)
1 ,n+1A
(n+2)
1 ,n+2