266 6. Applications of Determinants in Mathematical Physics
c. Dt(φij)=φi 0 φj 2 −φi 1 φj 1 +φi 2 φj 0 −
1
2
(φi+3,j+φi,j+3).
Proof. Putfr=−gr=b
2
r
in identity (D).
(b
2
i−b
2
j)A
ij
=
∑
r
∑
s
[
δrs(b
2
r−b
2
s)er+2(br−bs)
]
A
is
A
rj
=0+2
∑
r
∑
s
(br−bs)A
is
A
rj
=2
∑
s
A
is
∑
r
brA
rj
− 2
∑
r
A
rj
∑
s
bsA
is
=2(ψ 0 iψ 1 j−ψ 0 jψ 1 i).
It follows that if
Fij=2ψ 0 iψ 1 j−b
2
i
A
ij
,
then
Fji=Fij.
Furthermore, ifGijis any function with the property
Gji=−Gij,
then
∑
i
∑
j
GijFij=0. (6.7.17)
The proof is trivial and is obtained by interchanging the dummy suffixes.
The proof of (a) can now be obtained by expanding the quadruple series
S=
∑
p,q,r,s
(b
i
pb
j
r−b
j
pb
i
r)bsA
pq
A
rs
in two different ways and equating the results.
S=
∑
p,q
b
i
pA
pq
∑
r,s
b
j
rbsA
rs
−
∑
p,q
b
j
pA
pq
∑
r,s
b
i
rbsA
rs
=φi 0 φj 1 −φj 0 φi 1 ,
which is identical to the left side of (a). Also, referring to (6.7.17) with
i, j→p, r,
S=
∑
p,r
(b
i
pb
j
r−b
j
pb
i
r)
∑
q
A
pq
∑
s
bsA
rs
=
∑
p,r
(b
i
p
b
j
r
−b
j
p
b
i
r
)ψ 0 pψ 1 r
=
1
2
∑
p,r
(b
i
p
b
j
r
−b
j
p
b
i
r
)(Fpr+b
2
p
A
pr
)