266 6. Applications of Determinants in Mathematical Physics
c. Dt(φij)=φi 0 φj 2 −φi 1 φj 1 +φi 2 φj 0 −1
2(φi+3,j+φi,j+3).Proof. Putfr=−gr=b
2
r
in identity (D).(b2
i−b2
j)Aij
=∑
r∑
s[
δrs(b2
r−b2
s)er+2(br−bs)]
A
is
Arj=0+2
∑
r∑
s(br−bs)Ais
Arj=2
∑
sA
is∑
rbrArj
− 2∑
rA
rj∑
sbsAis=2(ψ 0 iψ 1 j−ψ 0 jψ 1 i).It follows that if
Fij=2ψ 0 iψ 1 j−b2
iA
ij
,then
Fji=Fij.Furthermore, ifGijis any function with the property
Gji=−Gij,then
∑i∑
jGijFij=0. (6.7.17)The proof is trivial and is obtained by interchanging the dummy suffixes.
The proof of (a) can now be obtained by expanding the quadruple seriesS=
∑
p,q,r,s(bi
pbj
r−bj
pbi
r)bsApq
Arsin two different ways and equating the results.
S=
∑
p,qbi
pApq∑
r,sbj
rbsArs
−∑
p,qbj
pApq∑
r,sbi
rbsArs=φi 0 φj 1 −φj 0 φi 1 ,which is identical to the left side of (a). Also, referring to (6.7.17) with
i, j→p, r,
S=
∑
p,r(bi
pbj
r−bj
pbi
r)∑
qA
pq∑
sbsArs=
∑
p,r(bi
p
bj
r
−bj
p
bi
r
)ψ 0 pψ 1 r=
1
2
∑
p,r(bi
p
bj
r
−bj
p
bi
r
)(Fpr+b2
pA
pr
)