6.7 The Korteweg–de Vries Equation 269∂
∂em(A
ij
)=−Aim
Amj. (6.7.26)
Let
ψp=∑
sA
sp. (6.7.27)
Then, (6.7.26) can be written
∑rbrerAir
Arj
=1
2
(bi+bj)Aij
−ψiψj. (6.7.28)From (6.7.27) and (6.7.26),
∂ψp∂eq=−A
pq∑
sA
sq=−ψqApq. (6.7.29)
Let
θp=ψ2
p. (6.7.30)Then,
∂θp∂eq=− 2 ψpψqApq
(6.7.31)=
∂θq∂ep, (6.7.32)
∂
2
θr∂ep∂eq=− 2
∂
∂ep(ψqψrAqr
)=2(ψpψqApr
Aqr
+ψqψrAqp
Arp
+ψrψpArq
Apq
),which is invariant under a permutation ofp,q, andr. Hence, ifGpqris any
function with the same property,
∑
p,q,rGpqr∂
2
θr∂ep∂eq=6
∑
p,q,rGpqrψpψqApr
Aqr. (6.7.33)
The above relations facilitate the evaluation of the derivatives ofvwhich,
from (6.7.7) and (6.7.27) can be written
v=∑
m(ψm−bm).Referring to (6.7.29),
∂v∂er=−ψr∑
mA
mr=−ψ2
r=−θr. (6.7.34)