6.7 The Korteweg–de Vries Equation 273Hence, from (6.7.48),
K
(n)
ijUn=
μjλi[
H
(n)
ijXn]
yi=−xi=bi=
μjλi∏np=1(bp+bj)(bi+bj)∏np=1
p=i(bp−bj)=
2 λjμj(bi+bj)λiμi. (6.7.50)
Hence,
|Eij|n=∣
∣
∣
∣
δijei+2 λjμj(bi+bj)λiμi∣
∣
∣
∣
n. (6.7.51)
Multiply rowiof this determinant byλiμi,1≤i≤n, and divide column
jbyλjμj,1≤j≤n. These operations do not affect the diagonal elements
or the value of the determinant but now
|Eij|n=∣
∣
∣
∣
δijei+2
bi+bj∣
∣
∣
∣
n=A. (6.7.52)It follows from (6.7.46) and (6.7.49) that
2
n(n−1)/ 2
(e 1 e 2 ···en)1 / 2
W=UnA, (6.7.53)which completes the proof of the theorem sinceUnis independent ofxand
t.
It follows thatlogA= constant +1
2
∑
i(−bix+b3
it) + logW. (6.7.54)Hence,
u=2D2
x
(logA)=2D2
x
(logW) (6.7.55)so that solutions containingAandW have equally valid claims to be
determinantal solutions of the KdV equation.
6.7.5 Direct Verification of the Wronskian Solution
The substitution
u=2D2
x
(logw)