Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.7 The Korteweg–de Vries Equation 275

Hence,wwzz−w
2
z


=0,

F=wwxt−wxwt+3w

2
xx
− 4 wxwxxx+wwxxxx+3(wwzz−w

2
z

)

=w

[

(wt+4wxxx)x−3(wxxxx−wzz)

]

−wx(wt+4wxxx)+3(w

2
xx
−w

2
z

). (6.7.60)

The evaluation of the derivatives of a Wronskian is facilitated by expressing


it in column vector notation.


Let

W=



..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 2 Cn− 1



n

, (6.7.61)

where


Cj=

[

D

j
x(ψ^1 )D

j
x(ψ^2 )···D

j
x(ψn)

]T

.

The significance of the row of dots above the (n−3) columnsC 0 toCn− 4


will emerge shortly. It follows from (6.7.58) and (6.7.59) that


Dx(Cj)=Cj+1,

Dz(Cj)=D

2
x
(Cj)=Cj+2,

Dt(Cj)=− 4 D

3
x
(Cj)=− 4 Cj+3. (6.7.62)

Hence, differentiating (6.7.61) and discarding determinants with two


identical columns,


wx=



..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 2 Cn



n

,

wxx=



..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 1 Cn



n

+



..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 2 Cn+1



n

,

wz=



..............................
C 0 C 1 ···Cn− 4 Cn− 3 CnCn− 1



n

+



..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 2 Cn+1



n

,

etc. The significance of the row of dots above columnsC 0 toCn− 4 is


beginning to emerge. These columns are common to all the determinants


which arise in all the derivatives which appear in the second line of (6.7.60).


They can therefore be omitted without causing confusion.


Let

Vpqr=



..............................
C 0 C 1 ···Cn− 4 CpCqCr



n

. (6.7.63)

Then,Vpqr=0ifp,q, andrare not distinct andVqpr=−Vpqr, etc. In this


notation,


w=Vn− 3 ,n− 2 ,n− 1 ,

wx=Vn− 3 ,n− 2 ,n,

wxx=Vn− 3 ,n− 1 ,n+Vn− 3 ,n− 2 ,n+1,

wxxx=Vn− 2 ,n− 1 ,n+2Vn− 3 ,n− 1 ,n+1+Vn− 3 ,n− 2 ,n+2,
Free download pdf