6.9 The Benjamin–Ono Equation 283
two columns as follows:
P=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
c 1 1
c 2 1
··· ···
[aij]n ··· ···
··· ···
cn 1
−c 1 −c 2 ··· −cn 00
− 1 − 1 ··· − 100
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
∣
n+2
(6.9.9)
and letQdenote the determinant of order (n+ 2) obtained by bordering
Bin a similar manner. Four of the cofactors ofPare
Pn+1,n+1=
∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
1
1
···
[aij]n ···
···
1
− 1 − 1 ··· − 10
∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1
, (6.9.10)
Pn+1,n+2=−
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
c 1
c 2
···
[aij]n ···
···
cn
− 1 − 1 ··· − 10
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1
=
∑
r
∑
s
crArs, (6.9.11)
Pn+2,n+1=−
∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣
1
1
···
[aij]n ···
···
1
−c 1 −c 2 ··· −cn 0
∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣
n+1
, (6.9.12)
Pn+2,n+2=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
c 1
c 2
···
[aij]n ···
···
cn
−c 1 −c 2 ··· −cn 0
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1