3 Intermediate Determinant Theory
3.1 Cyclic Dislocations and Generalizations...........
Define column vectorsCjandC
∗
j
as follows:
Cj=[
a 1 ja 2 ja 3 j···anj]T
C
∗
j=[
a∗
1 ja∗
2 ja∗
3 j···a∗
nj]T
where
a∗
ij=n
∑r=1(1−δir)λirarj,that is, the elementa
∗
ij
inC
∗
j
is a linear combination of all the elements
inCjexceptaij, the coefficientsλirbeing independent ofjbut otherwise
arbitrary.
Theorem 3.1.
n
∑j=1∣
∣
C 1 C 2 ···C
∗
j···Cn∣
∣
=0.
Proof.
∣
∣C
1 C 2 ···C
∗
j
···Cn∣
∣=
n
∑i=1a∗
ij
Aij=
n
∑i=1Aijn
∑r=1(1−δir)λirarj.