Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.10 The Einstein and Ernst Equations 301

Hence,


Pn

Pn− 1

=

{

2

ρ

} 2 n− 1

V 2 n(c)

{

G

F

}

,

Qn+1

Qn

=−

{

2

ρ

} 2 n− 1

V 2 n(c)

{

F


G


}

(6.10.61)

ζ+=− 2

2 n− 1
V 2 n(c)

{

F


G


}

,

ζ−=2

2 n− 1
V 2 n(c)

{

G

F

}

. (6.10.62)

Finally, applying the B ̈acklund transformationεin Appendix A.12 with


b=2


2 n− 1
V 2 n(c),

ζ


+

=

ζ−− 2

2 n− 1
V 2 n(c)

ζ−+2
2 n− 1
V 2 n(c)

=

1 −(F/G)

1+(F/G)

.

Similarly,


ζ



=

1 −(F


/G


)

1+(F


/G

)

. (6.10.63)

Discarding the primes,ζ−=ζ



+. Hence, referring to (6.2.13),

φ=

1
2
(ζ++ζ−)=

1
2
(ζ++ζ


+),

ψ=

1

2 ω

(ζ+−ζ−)=

1

2 ω

(ζ+−ζ


+)(ω

2
=−1), (6.10.64)

which are both real. It follows that these solutions are physically significant.


Exercise.Prove the following identities:


A 2 n=αn(GG


−FF


),

A 2 n+1=βnF


G,

A 2 n− 1 =βn− 1 FG


,

A

(2n+1)
1 , 2 n+1
=αn(GG


+FF


),

where


αn=

(−1)

n
2

2 n(n−1)
V

2(n−1)
2 n

ρ
2 n(n−1)

(^2) ∏n
i=1
εi


,

βn=

(−1)

n− 1
2

2 n
2
V

2 n− 1
2 n

ρ^2 n

(^2) − 1
(^2) ∏n
i=1
ε

i


.
Free download pdf