6.10 The Einstein and Ernst Equations 301
Hence,
Pn
Pn− 1
=
{
2
ρ
} 2 n− 1
V 2 n(c)
{
G
F
}
,
Qn+1
Qn
=−
{
2
ρ
} 2 n− 1
V 2 n(c)
{
F
∗
G
∗
}
(6.10.61)
ζ+=− 2
2 n− 1
V 2 n(c)
{
F
∗
G
∗
}
,
ζ−=2
2 n− 1
V 2 n(c)
{
G
F
}
. (6.10.62)
Finally, applying the B ̈acklund transformationεin Appendix A.12 with
b=2
2 n− 1
V 2 n(c),
ζ
′
+
=
ζ−− 2
2 n− 1
V 2 n(c)
ζ−+2
2 n− 1
V 2 n(c)
=
1 −(F/G)
1+(F/G)
.
Similarly,
ζ
′
−
=
1 −(F
∗
/G
∗
)
1+(F
∗
/G
∗
)
. (6.10.63)
Discarding the primes,ζ−=ζ
∗
+. Hence, referring to (6.2.13),
φ=
1
2
(ζ++ζ−)=
1
2
(ζ++ζ
∗
+),
ψ=
1
2 ω
(ζ+−ζ−)=
1
2 ω
(ζ+−ζ
∗
+)(ω
2
=−1), (6.10.64)
which are both real. It follows that these solutions are physically significant.
Exercise.Prove the following identities:
A 2 n=αn(GG
∗
−FF
∗
),
A 2 n+1=βnF
∗
G,
A 2 n− 1 =βn− 1 FG
∗
,
A
(2n+1)
1 , 2 n+1
=αn(GG
∗
+FF
∗
),
where
αn=
(−1)
n
2
2 n(n−1)
V
2(n−1)
2 n
ρ
2 n(n−1)
(^2) ∏n
i=1
εi
,
βn=
(−1)
n− 1
2
2 n
2
V
2 n− 1
2 n
ρ^2 n
(^2) − 1
(^2) ∏n
i=1
ε
∗
i