6.11 The Relativistic Toda Equation — A Brief Note 303
x=t
√
1 −a
2
=
ct
√
1+c
2
. (6.11.4)
Equations (6.11.1)–(6.11.3) are satisfied by the functions
Un=|ui,n+j− 1 |m,
Vn=|vi,n+j− 1 |m,
Wn=|wi,n+j− 1 |m, (6.11.5)
where the determinants are Casoratians (Section 4.14) of arbitrary order
mwhose elements are given by
uij=Fij+Gij,
vij=aiFij+
1
ai
Gij,
wij=
1
ai
Fij+aiGij, (6.11.6)
where
Fij=
(
1
ai−a
)j
exp(ξi),
Gij=
(
ai
1 −aai
)j
exp(ηi),
ξi=
x
ai
+bi,
ηi=aix+ci, (6.11.7)
and where theai,bi, andciare arbitrary constants.