Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

324 Appendix


It follows from (A.6.2) that




m=ψm+1,m≥^0. (A.6.4)

The formula



m
ψ 0 =xψm,m> 0 ,

is proved in the section on differences in Appendix A.8.


Other formulas forψminclude the following:

ψm=

m

r=0

(−1)

m+r
r!Sm+1,r+1

(1−x)
r+1

,m≥0 (Comtet), (A.6.5)

ψm=

x

1 −x

m

r=1

(−1)

m+r
r!Smr

(1−x)
r

,m≥ 0 , (A.6.6)

where theSmrare Stirling numbers of the second kind (Appendix A.1).


ψm=

[

D

r

(

1

1 −xe
u

)]

u=0

,D=


∂u

(Zeitlin). (A.6.7)

Let


t=φ 0 =

1

1 −x

.

Then,


ψ 0 =−(1−t),

ψ 1 =−t+t

2

=−t(1−t),

ψ 2 =t− 3 t

2
+2t

3

=t(1−t)(1− 2 t),

ψ 3 =−t+7t

2
− 12 t

3
+6t

4

=−t(1−t)(1− 6 t+6t

2
),

ψ 4 =t− 15 t

2
+50t

3
− 60 t

4
+24t

5

=t(1−t)(1− 14 t+36t

2
− 24 t

3
).

The functionψmsatisfies the linear recurrence relations

ψm=x

[

1+

m

r=0

(

m

r

)

ψr

]

,m≥ 0 (A.6.8)

=

x

1 −x

[

1+

m− 1

r=0

(

m

r

)

ψr

]

,m≥1 (A.6.9)

x

m

r=0

(

m

r

)

ψm+r=

m

r=0

(−1)

m+r

(

m

r

)

ψm+r

=∆

m
ψm. (A.6.10)
Free download pdf