324 Appendix
It follows from (A.6.2) that
xψ
′
m=ψm+1,m≥^0. (A.6.4)
The formula
∆
m
ψ 0 =xψm,m> 0 ,
is proved in the section on differences in Appendix A.8.
Other formulas forψminclude the following:
ψm=
m
∑
r=0
(−1)
m+r
r!Sm+1,r+1
(1−x)
r+1
,m≥0 (Comtet), (A.6.5)
ψm=
x
1 −x
m
∑
r=1
(−1)
m+r
r!Smr
(1−x)
r
,m≥ 0 , (A.6.6)
where theSmrare Stirling numbers of the second kind (Appendix A.1).
ψm=
[
D
r
(
1
1 −xe
u
)]
u=0
,D=
∂
∂u
(Zeitlin). (A.6.7)
Let
t=φ 0 =
1
1 −x
.
Then,
ψ 0 =−(1−t),
ψ 1 =−t+t
2
=−t(1−t),
ψ 2 =t− 3 t
2
+2t
3
=t(1−t)(1− 2 t),
ψ 3 =−t+7t
2
− 12 t
3
+6t
4
=−t(1−t)(1− 6 t+6t
2
),
ψ 4 =t− 15 t
2
+50t
3
− 60 t
4
+24t
5
=t(1−t)(1− 14 t+36t
2
− 24 t
3
).
The functionψmsatisfies the linear recurrence relations
ψm=x
[
1+
m
∑
r=0
(
m
r
)
ψr
]
,m≥ 0 (A.6.8)
=
x
1 −x
[
1+
m− 1
∑
r=0
(
m
r
)
ψr
]
,m≥1 (A.6.9)
x
m
∑
r=0
(
m
r
)
ψm+r=
m
∑
r=0
(−1)
m+r
(
m
r
)
ψm+r
=∆
m
ψm. (A.6.10)