324 Appendix
It follows from (A.6.2) that
xψ′
m=ψm+1,m≥^0. (A.6.4)The formula
∆
m
ψ 0 =xψm,m> 0 ,is proved in the section on differences in Appendix A.8.
Other formulas forψminclude the following:ψm=m
∑r=0(−1)
m+r
r!Sm+1,r+1(1−x)
r+1,m≥0 (Comtet), (A.6.5)ψm=x1 −xm
∑r=1(−1)
m+r
r!Smr(1−x)
r,m≥ 0 , (A.6.6)where theSmrare Stirling numbers of the second kind (Appendix A.1).
ψm=[
D
r(
1
1 −xe
u)]
u=0,D=
∂
∂u(Zeitlin). (A.6.7)Let
t=φ 0 =1
1 −x.
Then,
ψ 0 =−(1−t),ψ 1 =−t+t2=−t(1−t),ψ 2 =t− 3 t2
+2t3=t(1−t)(1− 2 t),ψ 3 =−t+7t2
− 12 t3
+6t4=−t(1−t)(1− 6 t+6t2
),ψ 4 =t− 15 t2
+50t3
− 60 t4
+24t5=t(1−t)(1− 14 t+36t2
− 24 t3
).The functionψmsatisfies the linear recurrence relationsψm=x[
1+
m
∑r=0(
mr)
ψr]
,m≥ 0 (A.6.8)=
x1 −x[
1+
m− 1
∑r=0(
mr)
ψr]
,m≥1 (A.6.9)xm
∑r=0(
mr)
ψm+r=m
∑r=0(−1)
m+r(
mr)
ψm+r=∆
m
ψm. (A.6.10)