Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
A.7 Symmetric Polynomials 327

Also,


gnj(xi)=0,j=i. (A.7.5)

Examples


σ

(3)
2
=x 1 x 2 +x 1 x 3 +x 2 x 3 ,

σ

(n)
r 0
=1, 1 ≤r≤n,

σ

(3)
21
=x 1 +x 3 ,

σ

(3)
22
=x 1 x 3 ,

σ

(4)
31
=x 1 +x 2 +x 4 ,

σ

(4)
32
=x 1 x 2 +x 1 x 4 +x 2 x 4 ,

σ

(4)
33 =x^1 x^2 x^4.

Lemma.


σ

(n)
rs

=

s

p=0

σ

(n)
p
(−xr)

s−p
.

Proof. Since


gr(x)=−

1

xr

(

1 −

x

xr

)− 1

f(x)

=−

f(x)

xr



q=0

(

x

xr

)q

,

it follows that


n− 1

s=0

(−1)

s+1
σ

(n)
rsx

n− 1 −s
=

n

p=0



q=0

(−1)

p
σ

(n)
p x

n−p+q

x

q+1
r

.

Equating coefficients ofx
n− 1 −s
,


(−1)

s+1
σ

(n)
rs

=

n

p=s+1

(−1)

p
σ

(n)
p
x

s−p
r

.

Hence


(−1)

s+1
σ

(n)
rs

+

s

p=0

(−1)

p
σ

(n)
p
x

s−p
r

=

n

p=0

(−1)

p
σ

(n)
p
x

s−p
r

=x

s−n
r f(xr)

=0.

The lemma follows. 


Symmetric polynomials appear in Section 4.1.2 on Vandermondians.
Free download pdf