A.7 Symmetric Polynomials 327
Also,
gnj(xi)=0,j=i. (A.7.5)
Examples
σ
(3)
2
=x 1 x 2 +x 1 x 3 +x 2 x 3 ,
σ
(n)
r 0
=1, 1 ≤r≤n,
σ
(3)
21
=x 1 +x 3 ,
σ
(3)
22
=x 1 x 3 ,
σ
(4)
31
=x 1 +x 2 +x 4 ,
σ
(4)
32
=x 1 x 2 +x 1 x 4 +x 2 x 4 ,
σ
(4)
33 =x^1 x^2 x^4.
Lemma.
σ
(n)
rs
=
s
∑
p=0
σ
(n)
p
(−xr)
s−p
.
Proof. Since
gr(x)=−
1
xr
(
1 −
x
xr
)− 1
f(x)
=−
f(x)
xr
∞
∑
q=0
(
x
xr
)q
,
it follows that
n− 1
∑
s=0
(−1)
s+1
σ
(n)
rsx
n− 1 −s
=
n
∑
p=0
∞
∑
q=0
(−1)
p
σ
(n)
p x
n−p+q
x
q+1
r
.
Equating coefficients ofx
n− 1 −s
,
(−1)
s+1
σ
(n)
rs
=
n
∑
p=s+1
(−1)
p
σ
(n)
p
x
s−p
r
.
Hence
(−1)
s+1
σ
(n)
rs
+
s
∑
p=0
(−1)
p
σ
(n)
p
x
s−p
r
=
n
∑
p=0
(−1)
p
σ
(n)
p
x
s−p
r
=x
s−n
r f(xr)
=0.
The lemma follows.
Symmetric polynomials appear in Section 4.1.2 on Vandermondians.