332 Appendix
Illustration.The function
f=Ax 0 x 2 x 4 x 6 +
Bx 0 x 2 x
2
3
x 5
x 1
+
Cx
2
0
x 1 x
5
3
+Dx
8
2
Ex
3
0 x^4 +Fx
4
1
(A.9.4)
is homogeneous of degree 4 in its variables and homogeneous of degree 12
in the suffixes of its variables. Hence,
6
∑
r=0
xr
∂f
∂xr
=4f,
6
∑
r=1
rxr
∂f
∂xr
=12f.
A.10 Formulas Related to the Function
(x+
√
1+x
2
)
2 n
Define functionsλnrandμnras follows. Ifnis a positive integer,
(x+
√
1+x
2
)
2 n
=
n
∑
r=0
λnrx
2 r
+
√
1+x
2
n
∑
r=1
μnrx
2 r− 1
, (A.10.1)
where
λnr=
n
n+r
(
n+r
2 r
)
2
2 r
, (A.10.2)
μnr=
rλnr
n
. (A.10.3)
Define the functionνias follows:
(1 +z)
− 1 / 2
=
∞
∑
i=0
νiz
i
. (A.10.4)
Then
νi=
(−1)
i
2
2 i
(
2 i
i
)
=P 2 i(0),
ν 0 =1, (A.10.5)
wherePn(x) is the Legendre polynomial.
Theorem A.7.
n
∑
j=1
λn− 1 ,j− 1 νi+j− 2 =
δin
2
2(n−1)
, 1 ≤i≤n.