334 Appendix
λnr=
n
n+r
(
n+r
2 r
)
, 1 ≤r≤n,
λn 0 =1,n≥0;
μnr=
2 rλnr
n
, 1 ≤r≤n,
μn 0 =0,n≥ 0. (A.10.8)
Changing the sign ofxin (A.10.6),
(x−
√
1+x
2
)
2 n
=gn−hn
√
1+x
2
. (A.10.9)
Hence,
gn=
1
2
{
(x+
√
1+x
2
)
2 n
+(x−
√
1+x
2
)
2 n
}
,
hn=
1
2
{
(x+
√
1+x
2
)
2 n
−(x−
√
1+x
2
)
2 n
}
(
√
1+x
2
)
− 1
(A.10.10).
These functions satisfy the recurrence relations
gn+1=(1+2x
2
)gn+2x(1 +x
2
)hn,
hn+1=(1+2x
2
)hn+2xgn. (A.10.11)
Let
fn=
1
2
{
(x+
√
1+x
2
)
n
+(x−
√
1+x
2
)
n
}
. (A.10.12)
Lemmas.
a.f 2 n=gn
b.f 2 n+1=
gn+1−gn
2 x
.
Proof. The proof of (a) is trivial. To prove (b), note that
f 2 n+1=
1
2
{
(x+
√
1+x
2
)(gn+hn
√
1+x
2
)
+(x−
√
1+x
2
)(gn−hn
√
1+x
2
)
}
=xgn+(1+x
2
)hn. (A.10.13)
The result is obtained by eliminatinghnfrom the first line of (A.10.11).
In the next theorem, ∆ is the finite-difference operator (Appendix A.8).
Theorem A.8.
a.gm+n+gm−n=2gmgn,
b.∆(gm+n− 1 +gm−n− 1 )=2gn∆gm− 1 ,
c. 2 x
2
(gm+n− 1 −gm−n)=∆gm− 1 ∆gn− 1 ,
d.∆(gm+n− 1 −gm−n)=2gm∆gn− 1 ,
e. gm+n+1+gm−n= 2(1 +x
2
)(gm+xhm)(gn+xhn),
f.∆(gm−n+gm−n)=4x(1 +x
2
)hm(gn−xhn),
g.gm+n−gm−n= 2(1 +x
2
)hmhn,
h.∆(gm+n− 1 −gm−n− 1 )=4x(1 +x
2
)hn(gm−xhm).