A.12 B ̈acklund Transformations 339∇·
(
∇ψφ)
=
1
φ^2(φ∇2
ψ−∇φ·∇ψ), (A.12.10)∇·
(
∇ψφ
2)
=
1
φ
3(φ∇2
ψ− 2 ∇φ·∇ψ), (A.12.11)∇
2
(logφ)=1
φ
2[φ∇2
φ−(∇φ)2
], (A.12.12)∇
2
(logρ)=0. (A.12.13)Applying (A.12.12) and (A.12.11), the coupled equations (A.12.2) and
(A.12.3) become
φ2
∇2
(logφ)+(∇ψ)2
=0, (A.12.14)∇·
(
∇ψφ
2)
=0. (A.12.15)
Transformationβ(Ehlers)
If the pairP(φ, ψ) is a solution of (A.12.4) and (A.12.5), andφ
′
andψ′
arefunctions which satisfy the relations
a.φ′
=ρφ,
b.
∂ψ′∂ρ=−
ωρφ
2∂ψ∂z,
c.∂ψ′∂z=
ωρφ
2∂ψ∂ρ,(ω
2
=−1),then the pairP
′
(φ′
,ψ′
) is also a solution.Proof. Applying (A.12.6) and (A.12.7) to (A.12.15),
∇·
(
1
φ
2∂ψ∂ρ,
1
φ
2∂ψ∂z)
=0,
∂
∂ρ(
ρφ
2∂ψ∂ρ)
+
∂
∂z(
ρφ
2∂ψ∂z)
=0,
which is satisfied by (b) and (c). Eliminatingψfrom (b) and (c),
∂
∂ρ(
φ
2ρ∂ψ
′∂ρ)
+
∂
∂z(
φ
2ρ∂ψ
′∂z)
=0,
∂
2
ψ′∂ρ
2−
1
ρ∂ψ′∂ρ+
∂
2
ψ′∂z
2=−
2
φ(
∂φ∂ρ∂ψ′∂ρ+
∂φ∂z∂ψ′∂z)
.
Hence, referring to (A.12.8) and (a),
∇
2
ψ′
=2 φρ[(
1
φ−
ρφ
2∂φ∂ρ)
∂ψ
′∂ρ−
ρφ
2∂φ∂z∂ψ
′∂z]
=
2 φρ[
∂
∂ρ(
ρφ)
∂ψ′∂ρ+
∂
∂z(
ρφ)
∂ψ′∂z