Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

366 Bibliography


D.E. Rutherford, Some continuant determinants arising in physics and chemistry,


I.Proc. Roy. Soc. Edin.A62(1945), 229–236; II.Proc. Roy. Soc. Edin.A63

(1952), 232–241. [MR 15 (1954), 495.]

H.J. Ryser Maximal determinants in combinatorial investigations.Can. J. Math.


8 (1956), 245–249. [MR 18 (1957), 105.]

G. Salmon,Modern Higher Algebra, Hodges, Figgis, London, 1885.


H.E. Saltzer, A determinant form for nonlinear divided differences with ap-


plications.Z. Angew. Math. Mech. 66 (1986), 183–185. [Zbl 595 (1987),

41001.]

P. Sarnak, Determinants of Laplacians.Commun. Math. Phys. 110 (1987), 113–



  1. [MR 89e: 58116.]


N. Sasa, J. Satsuma, A series of exact solutions based on a bilinear form of the


stationary axially symmetric vacuum Einstein equations.J. Phys. Soc. Japan

62 (1993), 1153–1158. [PA 96 (1993), 84963.]

T. Sasaki, Constructing Bezout’s determinants from Sylvester’s determinants.


J. Inf. Process. Japan 6 (1983), 163–166. [PAB87(1984), 18799; Zbl 545

(1985), 65027.]

T. Sasamoto, M. Wadati, Determinantal form solutions for the derivative


nonlinear Schr ̈odinger type model.J. Phys. Soc. Japan 67 (1998), 784–790.

M. Sato, M. Kashiwara, The determinants of matrices of pseudo-differential


operators.Proc. Japan Acad. 51 (1975), 17–19. [Zbl 337 (1977), 35067.]

J. Satsuma, A Wronskian representation ofN-soliton solutions of nonlinear evo-


lution equations.Phys. Soc. Jap. Lett. 46 (1979), 359–360. [PA 82 (1979),

25867.]

J. Satsuma, K. Kajiwara, J. Matsukidaira, J. Hietarinta, Solutions of the Broer–


Kaup system through its trilinear form.J. Phys. Soc. Japan 61 (1992), 3096–


  1. [PA (1992), 139300.]


J.W. Schleusner, J.P. Singhal, On determinantal representations for certain


orthogonal polynomials.J. Natur. Sci. Math. 10 (1970), 287–291.

J. Schlitter, A. Metz, The Hessian in function minimization.Int. J. Computer


Math. 24 (1988), 65–72. [Zbl 661 (1989), 65063.]

H. Schmidt,Uber das additionstheorem der zyklishen funktionen. ̈ Math. Z. 76


(1961), 46–50. [MR24A(1962), 276.]

F. Schmittroth, Derivatives of a composite functionf[g(x)] [Solution to a problem


proposed by V.F. Ivanoff].Am. Math. Monthly 68 (1961), 69.

A. Schwartz, J.S. de Wet, The minors of a determinant in terms of Pfaffians.


Proc. Camb. Phil. Soc. 46 (1950), 519–520. [MR 11 (1950), 710.]

R.F. Scott, G.B. Mathews,The Theory of Determinants, 2nd ed., Cambridge


University Press, Cambridge, 1904.

W. Seidel, Note on a persymmetric determinant.Quart. J. Math.(Oxford), 4


(1953), 150–151. [MR 15 (1954), 3.]

E. Seiler, B. Simon, An inequality among determinants.Proc. Nat. Acad. Sci.


USA, 72 (1975), 3277–3278. [MR 55 (1978), 6225.]

C. Shafroth, A generalization of the formula for computing the inverse of a matrix.


Am. Math. Monthly 88 (1981), 614–616. [MR 82j: 15006.]
Free download pdf