Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
Bibliography 369

G. Tsoucaris, A new method of phase determination: The “maximum de-


terminant rule.” Acta Cryst. A 26 (1970), 492–499. [PA 74 (1971),

5137.]

Z. Tsuboi, A. Kuniba, Solutions of a discretized Toda field equation for Dfrom


analytic Bethe ansatz.J. Phys. A: Math. Gen. 29 (1996), 7785–7796.

P. Turan, On some questions concerning determinants.Ann. Polon. Math. 12


(1962), 49–53. [Zbl 106 (1964), 15.]

W.T. Tutte, The factorization of linear graphs.J. Lond. Math. Soc. 22 (1947),


107–111. [MR 9 (1948), 297.]

J.L. Ullman, Hankel determinants whose elements are sections of a Taylor series,


Part 1.Duke Math. J. 18 (1951), 751–756; Part 2.Duke Math. J. 19 (1952),

155–164. [MR 13 (1952), 221, 926; Zbl 43 (1952), 78.]

R. Vaidyanathaswamy, A theory of multiplicative arithmetic functions VII, The


theory of Smith’s determinant.Trans. Am. Math. Soc. 33 (1931), 579–662.

[Zbl 2 (1932), 113.]

Y. Vaklev, Soliton solutions and gauge-equivalence for the problem of Zakharov–


Shabat and its generalizations.J. Math. Phys. 37 (1996), 1393–1413.

B.N. Valuev, Two definitions of the determinant and a proof of the Szeg ̈o–Kac


theorem.Teoret. Mat. Fiz. 55 (1983), 475–480. [MR 85d: 47029.]

A.J. van der Poorten, Some determinants which should be better known.J.


Austral. Math. Soc. A 21 (1976), 278–288. [MR 53 (1977), 10828.]

P.R. Vein, A lemma on cyclic dislocations in determinants and an application in


the verification of an identity.Am. Math. Monthly 69 (1962), 120–124. [MR

24A(1962), 1923.]

P.R. Vein, Nonlinear ordinary and partial differential equations associated with


Appell functions.J. Diff. Eqns. 11 (1972), 221–244. [Zbl 227 (1972), 35014.]

P.R. Vein, Persymmetric determinants 1. The derivatives of determinants with


Appell function elements.Linear Multilinear Alg. 11 (1982), 253–265. [MR

83m: 15007a; Zbl 457 (1982), 15004.]

P.R. Vein, Persymmetric determinants 2. Families of distinct submatrices with


non-distinct determinants.Linear Multilinear Alg. 11 (1982), 267–276. [MR

83m: 15007b; Zbl 457 (1982), 15005.]

P.R. Vein, Persymmetric determinants 3. A basic determinant.Linear Multilinear


Alg. 11 (1982), 305–315. [MR 83m: 15007c; Zbl 457 (1982), 15006.]

P.R. Vein, Persymmetric determinants 4. An alternative form of the Yamazaki–


Hori determinantal solution of the Ernst equation.Linear Multilinear Alg. 12

(1983), 329–339. [MR 83m: 15007d; Zbl 457 (1982), 15007.]

P.R. Vein, Persymmetric determinants 5. Families of overlapping coaxial equiv-


alent determinants.Linear Multilinear Alg. 14 (1983), 131–141. [MR 85e:

15011.]

P.R. Vein, Two related families of determinantal solutions of the stationary ax-


ially symmetric vacuum Einstein equations.Class. Quantum Grav. 2 (1985),

899–908. [MR 87m: 83024; Zbl 563 (1985), 35079; PA 89 (1986), 24174).]

P.R. Vein, Identities among certain triangular matrices.Linear Alg. Applic. 82


(1986), 27–79. [Zbl 598 (1987), 15009; PA 90 (1987), 24353; MR 88a: 05018.]
Free download pdf