3.6 The Jacobi Identity and Variants 39It is required to prove that
J 12 ...r;12...r=Ar− 1
M 12 ...r;12...r=A
r− 1
A 12 ...r;12...r.The replacement of the minor by its corresponding cofactor is permitted
since the sum of the parameters is even. In some detail, the simplified
theorem states that
∣ ∣ ∣ ∣ ∣ ∣ ∣
A 11 A 21 ... Ar 1A 12 A 22 ... Ar 2....................A 1 r A 2 r ... Arr∣ ∣ ∣ ∣ ∣ ∣ ∣ r=A
r− 1∣ ∣ ∣ ∣ ∣ ∣ ∣
ar+1,r+1 ar+1,r+2 ... ar+1,nar+2,r+1 ar+2,r+2 ... ar+2,n...............................an,r+1 an,r+2 ... ann∣ ∣ ∣ ∣ ∣ ∣ ∣
n−r.
(3.6.2)
Proof. Raise the order ofJ 12 ...r;12...rfromrtonby applying the Laplace
expansion formula in reverse as follows:
J 12 ...r;12...r=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣
A 11 ... Ar 1
.
.
..
.
.
A 1 r ... Arr...............................A 1 ,r+1 ... Ar,r+1 1.
.
..
.
.
.
.
.
A 1 n ... Arn 1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ n}
rrows}
(n−r)rows. (3.6.3)
Multiply the left-hand side byA, the right-hand side by|aij|n, apply the
formula for the product of two determinants, the sum formula for elements
and cofactors, and, finally, the Laplace expansion formula again
AJ 12 ...r;12...r=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
A
.
.
. a 1 ,r+1 ... a 1 n
.
.
..
.
.
.
.
.
.
.
.
A
.
.
. ar,r+1 ... arn
.....................................
.
.. ar+1,r+1 ... ar+1,n
.
.
..
.
.
.
.
.
.
.
. an,r+1 ... ann
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
}
rrows}
(n−r)rows=A
r∣ ∣ ∣ ∣ ∣ ∣ ∣
ar+1,r+1 ... ar+1,n.
.
..
.
.
an,r+1 ... ann∣ ∣ ∣ ∣ ∣ ∣ ∣
n−r=Ar
A 12 ...r;12...r.The first stage of the proof follows.
The second stage proceeds as follows. Interchange pairs of rows and thenpairs of columns of adjAuntil the elements ofJas defined in (3.6.1) appear