58 4. Particular Determinants
Exercises
1.Prove the reduction formulaA
(n)
ij=A
(n−1)
ijn− 1
∏r=1
r=i(
xn−xrxr−yn)n− 1
∏s=1
s=j(
ys−ynxn−ys)
.
Hence, or otherwise, prove thatA
ij
n=1
xi−yjf(yj)g(xi)f
′
(xi)g
′
(yj),
wheref(t)=n
∏r=1(t−xr),g(t)=n
∏s=1(t−ys).2.LetVn=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
f(x 1 )f(x 2 )[aij]n.
.
.
.
.
.
f(xn)11 ... ... 11∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1,
Wn=∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣
f(x 1 )f(x 2 )[aij]n.
.
.
.
.
.
f(xn)− 1 − 1 ... ... − 11∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1,
whereaij=(
1 −xiyjxi−yj)
f(xi),f(x)=n
∏i=1(x−yi).Show thatVn=(−1)n(n+1)/ 2
XnYnn
∏i=1(xi−1)(yi+1),