70 4. Particular Determinants
In detail,
Bn=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
− 1 • 11 ··· 11
− 1 − 1 • 1 ··· 11
− 1 − 1 − 1 • ··· 11
.................................
− 1 − 1 − 1 − 1 ··· − 1 •
− 1 − 1 − 1 − 1 ··· − 1 − 1
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
Lemma 4.13.
Bn=(−1)n
.Proof. Perform the column operation
C
′
2=C 2 −C 1
and then expand the resulting determinant by elements from the newC 2.
The result is
Bn=−Bn− 1 =Bn− 2 =···=(−1)n− 1
B 1.ButB 1 =−1. The result follows.
Lemma 4.14.
a.2 n
∑k=1(−1)
j+k+1
=0,b.
i− 1
∑k=1(−1)
j+k+1
=(−1)j
δi,even,c.2 n
∑k=i(−1)
j+k+1
=(−1)j+1
δi,even,where theδfunctions are defined in Appendix A.1. All three identities follow
from the elementary identity
q
∑k=p(−1)
k
=(−1)p
δq−p,even. Define the functionEijas follows:
Eij=
(−1)
i+j+1
,i<j0 ,i=j−(−1)i+j+1
, i>j.Lemma 4.15.
a.2 n
∑k=1Ejk=(−1)j+1
,