72 4. Particular Determinants
Lemma 4.16.
En=δn,even.Proof. Perform the column operation
C
′
n=Cn+C^1 ,expand the result by elements from the newCn, and apply Lemma 4.13
En=(−1)n− 1
Bn− 1 −En− 1=1−En− 1=1−(1−En− 2 )=En− 2 =En− 4 =En− 6 ,etc.Hence, ifnis even,
En=E 2 =1and ifnis odd,
En=E 1 =0,which proves the result.
Lemma 4.17. The functionEijdefined in Lemma 4.15 is the cofactor of
the elementεijinE 2 n.
Proof. Let
λij=2 n
∑k=1εikEjk.It is required to prove thatλij=δij.
λij=i− 1
∑k=1εikEjk+0+2 n
∑k=i+1εikEjk=−
i− 1
∑k=1Ejk+2 n
∑k=i+1Ejk=
[
2 n
∑k=i−
i− 1
∑k=1]
Ejk−Eji.Ifi<j,
λij=(−1)j+1[
δi,odd−δi,even+(−1)i]
=0.
Ifi>j,
λij=(−1)j+1[
δi,even−δi,odd−(−1)i