80 4. Particular Determinants
ωris also a function ofn, but thenis suppressed to simplify the notation.
Thennumbers
1 ,ωr,ω2
r,...,ωn− 1
r (4.4.5)are thenth roots of unity for any value ofr. Two different choices ofrgive
rise to the same set of roots but in a different order. It follows from the
third line in (4.4.4) that
n− 1
∑s=0ωs
r
=0, 0 ≤r≤n− 1. (4.4.6)Theorem.
An=n− 1
∏r=0n
∑s=1ωs− 1
r as.Proof. Let
zr=n
∑s=1ωs− 1
r as=a 1 +ωra 2 +ω2
r
a 3 +···+ωn− 1
r
an,ωn
r=1. (4.4.7)
Then,
ωrzr=an+ωra 1 +ω2
ra^2 +···+ωn− 1
r an−^1ω2
rzr=an−^1 +ωran+ω2
ra^1 +···+ωn− 1
r an−^2............................................ωn− 1
r zr=a^2 +ωra^3 +ω2
ra^4 +···+ωn− 1
r a^1
. (4.4.8)
ExpressAnin column vector notation and perform a column operation:
An=∣
∣C
1 C 2 C 3 ···Cn∣
∣
=
∣
∣C′
1
C 2 C 3 ···Cn∣
∣,
where
C
′
1 =n
∑j=1ωj− 1
r Cj=
a 1anan− 1.
.
.a 2
+ωr
a 2a 1an
.
.
.a 3
+ω2
r
a 3a 2a 1
.
.
.a 4
+···+ωn− 1
r
anan− 1an− 2.
.
.a 1
=zrWr,where
Wr=[
1 ωrω2
r
···ωn− 1
r