94 CHAPTER 4 Virtual Work and Energy Methods
Shear Force
Theshearforce,S,actingonthemembersectioninFig.4.5producesadistributionofverticalshearstress
whichdependsonthegeometryofthecrosssection.However,sincetheelement,δA,isinfinitesimally
small, we may regard the shear stress,τ, as constant over the element. The shear force,δS,onthe
elementisthen
δS=τδA (4.13)
Suppose that the structure is given an arbitrary virtual displacement which produces a virtual shear
strain,γv, at the element. This shear strain represents the angular rotation in a vertical plane of the
elementδA×δxrelativetothelongitudinalcentroidalaxisofthemember.Theverticaldisplacement
atthesectionbeingconsideredis,therefore,γvδx.Theinternalvirtualwork,δwi,S,donebytheshear
force,S,ontheelementallengthofthememberisgivenby
δwi,S=
∫
A
τdAγvδx
Auniformshearstressthroughthecrosssectionofabeammaybeassumedifweallowfortheactual
variation by including a form factor,β[Ref. 1]. The expression for the internal virtual work in the
membermaythenbewrittenas
δwi,S=
∫
A
β
(
S
A
)
dAγvδx
or
δwi,S=βSγvδx (4.14)
Hence,thevirtualworkdonebytheshearforceduringthearbitraryvirtualstraininamemberoflength
Lis
wi,S=β
∫
L
Sγvdx (4.15)
Foralinearlyelasticmember,asinthecaseofaxialforce,wemayexpressthevirtualshearstrain,γv,
intermsofanequivalentvirtualshearforce,Sv:
γv=
τv
G
=
Sv
GA
sothatfromEq.(4.15)
wi,S=β
∫
L
SASv
GA
dx (4.16)
Forastructurecomprisinganumberoflinearlyelasticmembersthetotalinternalwork,Wi,S,doneby
theshearforcesis
Wi,S=
∑
β
∫
L
SASv
GA
dx (4.17)