96 CHAPTER 4 Virtual Work and Energy Methods
sothatforastructurecomprisinganumberofmembersthetotalinternalvirtualwork,Wi,M,produced
bybendingis
Wi,M=
∑∫
L
MAMv
EI
dx (4.21)
Torsion
Theinternalvirtualwork,wi,T,duetotorsionintheparticularcaseofalinearlyelasticcircularsection
barmaybefoundinasimilarmannerandisgivenby
wi,T=
∫
L
TATv
GIo
dx (4.22)
inwhichIoisthepolarsecondmomentofareaofthecrosssectionofthebar(seeExample3.1).For
beamsofnoncircularcrosssection,Ioisreplacedbyatorsionconstant,J,which,formanypractical
beamsectionsisdeterminedempirically.
Hinges
In some cases, it is convenient to impose a virtual rotation,θv, at some point in a structural member
where,say,theactualbendingmomentisMA.TheinternalvirtualworkdonebyMAisthenMAθv(see
Eq.(4.3));physicallythissituationisequivalenttoinsertingahingeatthepoint.
Sign of Internal Virtual Work
So far we have derived expressions for internal work without considering whether it is positive or
negativeinrelationtoexternalvirtualwork.Supposethatthestructuralmember,AB,inFig.4.6(a)is,
say,amemberofatrussandthatitisinequilibriumundertheactionoftwoexternallyappliedaxial
tensileloads,P;clearlytheinternalaxial,thatisnormal,forceatanysectionofthememberisP.
Supposenowthatthememberisgivenavirtualextension,δv,suchthatBmovestoB′.Thenthe
virtualworkdonebytheappliedload,P,ispositive,sincethedisplacement,δv,isinthesamedirection
Fig.4.6
Sign of the internal virtual work in an axially loaded member.