100 CHAPTER 4 Virtual Work and Energy Methods
ifweimaginethatthebeamishingedatBandthatthelengthsABandBCarerigid,avirtualdisplacement,
(^) v,B,atBwillresultinthedisplacedshapeshowninFig.4.8(b).
NotethatthesupportreactionsatAandCdonoworkandthattheinternalmomentsinABandBC
donoworkbecauseABandBCarerigidlinks.FromFig.4.8(b)
(^) v,B=aβ=bα (i)
Hence,
α=
a
b
β
andtheangleofrotationofBCrelativetoABisthen
θB=β+α=β
(
1 +
a
b
)
=
L
b
β (ii)
Now equating the external virtual work done byWto the internal virtual work done byMB(see
Eq.(4.23)),wehave
W (^) v,B=MBθB (iii)
SubstitutinginEq.(iii)for (^) v,BfromEq.(i)andforθBfromEq.(ii),wehave
Waβ=MB
L
b
β
whichgives
MB=
Wab
L
whichistheresultwewouldhaveobtainedbycalculatingthemomentofRC(=Wa/LfromExample4.1)
aboutB.
Example 4.3
DeterminetheforceinthememberABinthetrussshowninFig.4.9(a).
WearerequiredtocalculatetheforceinthememberAB,sothatagainweneedtorelatethisinternal
forcetotheexternallyappliedloadswithoutinvolvingtheinternalforcesintheremainingmembersof
thetruss.Wethereforeimposeavirtualextension, (^) v,B,atBinthememberAB,suchthatBmoves
toB′.Ifweassumethattheremainingmembersarerigid,theforcesinthemwilldonowork.Further,
thetriangleBCDwillrotateasarigidbodyaboutDtoB′C′DasshowninFig.4.9(b).Thehorizontal
displacementofC, (^) C,isthengivenby
(^) C= 4 α
while
(^) v,B= 3 α