5.3Application to Deflection Problems 115Fig.5.3
Determination of the deflection of a point on a framework by the method of complementary energy.
whereλiistheextensionoftheithmember,Fiistheforceintheithmember,and (^) risthecorresponding
displacementoftherthloadPr.Fromtheprincipleofthestationaryvalueofthetotalcomplementary
energy,
∂C
∂P 2
=
∑ki= 1λi∂Fi
∂P 2− 2 = 0 (5.10)
fromwhich
2 =
∑ki= 1λi∂Fi
∂P 2(5.11)
Equation(5.10)isseentobeidenticaltotheprincipleofvirtualforcesinwhichvirtualforcesδFand
δPact through real displacementsλand. Clearly, the partial derivatives with respect toP 2 of the
constantloadsP 1 ,P 2 ,...,Pnvanish,leavingtherequireddeflection 2 astheunknown.Atthisstage,
before 2 canbeevaluated,theload–displacementcharacteristicsofthemembersmustbeknown.For
linearelasticity,
λi=FiLi
AiEiwhereLi,Ai,andEiare the length, the cross-sectional area, and the modulus of elasticity of the
ith member, respectively. On the other hand, if the load–displacement relationship is of a nonlinear
form,say,
Fi=b(λi)cinwhichbandcareknown,thenEq.(5.11)becomes
2 =
∑ki= 1(
Fi
b) 1 /c
∂Fi
∂P 2Thecomputationof 2 isbestaccomplishedintabularform,butbeforetheprocedureisillustratedby
anexample,someaspectsofthesolutionmeritdiscussion.