122 CHAPTER 5 Energy Methods
FromCtoD,
M=
(
1
4
PB,f+
1
2
PC,f+
wL
2
)
(L−z)−
w
2
(L−z)^2
sothat
∂M
∂PB,f
=
1
4
(L−z)
∂M
∂PC,f
=
1
2
(L−z)
Substituting these values in Eqs. (iv) and (v) and remembering thatPB,f=PC,f=0, we have, from
Eq.(iv),
(^) B=
1
EI
⎧
⎪⎨
⎪⎩
∫L/^4
0
(
wLz
2
−
wz^2
2
)
3
4
zdz+
∫L/^2
L/ 4
(
wLz
2
−
wz^2
2
)
1
4
(L−z)dz
+
∫L
L/ 2
(
wLz
2
−
wz^2
2
)
1
4
(L−z)dz
⎫
⎪⎬
⎪⎭
fromwhich
(^) B=
119 wL^4
24576 EI
Similarly,
(^) C=
5 wL^4
384 EI
Thefictitiousloadmethodofdeterminingdeflectionsmaybestreamlinedforlinearlyelasticsystems
andisthentermedtheunitloadmethod;thisweshalldiscusslaterinthechapter.
5.4 ApplicationtotheSolutionofStaticallyIndeterminateSystems...............................
In a statically determinate structure, the internal forces are determined uniquely by simple statical
equilibriumconsiderations.Thisisnotthecaseforastaticallyindeterminatesysteminwhich,aswe
havealreadynoted,aninfinitenumberofinternalforceorstressdistributionsmaybefoundtosatisfy
the conditions of equilibrium. The true force system is, as we demonstrated in Section 5.2, the one
satisfyingtheconditionsofcompatibilityofdisplacementoftheelasticstructureor,alternatively,that
forwhichthetotalcomplementaryenergyhasastationaryvalue.Weshallapplytheprincipletoavariety
ofstaticallyindeterminatestructures,beginningwiththerelativelysimplesinglyredundantpin-jointed
frameshowninFig.5.8inwhicheachmemberhasthesamevalueoftheproductAE.
The first step is to choose the redundant member. In this example, no advantage is gained by the
choiceofanyparticularmember,althoughinsomecasescarefulselectioncanresultinadecreasein
the amount of arithmetical labor. Taking BD as the redundant member, we assume that it sustains a