130 CHAPTER 5 Energy Methods
betweenFandBitis
M=
P
4
(L−z)−
√
3
2
Rz hence
∂M
∂R
=−
√
3
2
z
andbetweenBandCthebendingmomentis
M=
P
4
(L−z)−
√
3
2
R(L−z) hence
∂M
∂R
=−
√
3
2
(L−z)
Thus,
∫L
0
M
EI
∂M
∂R
dz=
1
EI
⎧
⎪⎨
⎪⎩
∫L/^4
0
−
(
3
4
Pz−
√
3
2
Rz
)√
3
2
zdz+
∫L/^2
L/ 4
[
P
4
(L−z)−
√
3
2
Rz
](
−
√
3
2
z
)
dz
+
∫L
L/ 2
−
[
P
4
(L−z)−
√
3
2
R(L−z)
]√
3
2
(L−z)dz
⎫
⎪⎬
⎪⎭
giving
∫L
0
M
EI
∂M
∂R
dz=
− 11
√
3 PL^3
768 EI
+
RL^3
16 EI
(v)
SubstitutingfromEqs.(iv)and(v)intoEq.(iii)
−
11
√
3 PL^3
768 EI
+
RL^3
16 EI
+
RL
4 E
(
A+ 10 AB
ABA
)
= 0
fromwhich
R=
11
√
3 PL^2 ABA
48[L^2 ABA+ 4 I(A+ 10 AB)]
hencetheforcesineachmemberoftheframework.Thedeflection oftheloadPoranypointonthe
frameworkmaybeobtainedbythemethodofSection5.3.Forexample,thestationaryvalueofthetotal
complementaryenergyofEq.(i)gives ,thatis,
∂C
∂P
=
∫
ABC
dθ
∂M
∂R
+
∑k
i= 1
λi
∂Fi
∂P
− = 0
Althoughbracedbeamsarestillfoundinmodernlightaircraftintheformofbracedwingstructures,
amuchmorecommonstructuralcomponentistheringframe.Theroleofthisparticularcomponentis
discussedindetailinChapter11;itisthereforesufficientforthemomenttosaythatringframesform
thebasicshapeofsemimonocoquefuselagesreactingshearloadsfromthefuselageskins,pointloads
fromwingsparattachments,anddistributedloadsfromfloorbeams.Usuallyaringistwo-dimensional,
supportingloadsappliedinitsownplane.Ouranalysisislimitedtothetwo-dimensionalcase.