Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

130 CHAPTER 5 Energy Methods


betweenFandBitis


M=

P

4

(L−z)−


3

2

Rz hence

∂M

∂R

=−


3

2

z

andbetweenBandCthebendingmomentis


M=

P

4

(L−z)−


3

2

R(L−z) hence

∂M

∂R

=−


3

2

(L−z)

Thus,


∫L

0

M

EI

∂M

∂R

dz=

1

EI


⎪⎨

⎪⎩

∫L/^4

0


(

3

4

Pz−


3

2

Rz

)√

3

2

zdz+

∫L/^2

L/ 4

[

P

4

(L−z)−


3

2

Rz

](



3

2

z

)

dz

+

∫L

L/ 2


[

P

4

(L−z)−


3

2

R(L−z)

]√

3

2

(L−z)dz


⎪⎬

⎪⎭

giving


∫L

0

M

EI

∂M

∂R

dz=

− 11


3 PL^3

768 EI

+

RL^3

16 EI

(v)

SubstitutingfromEqs.(iv)and(v)intoEq.(iii)



11


3 PL^3

768 EI

+

RL^3

16 EI

+

RL

4 E

(

A+ 10 AB

ABA

)

= 0

fromwhich


R=

11


3 PL^2 ABA

48[L^2 ABA+ 4 I(A+ 10 AB)]

hencetheforcesineachmemberoftheframework.Thedeflection oftheloadPoranypointonthe
frameworkmaybeobtainedbythemethodofSection5.3.Forexample,thestationaryvalueofthetotal
complementaryenergyofEq.(i)gives ,thatis,


∂C
∂P

=


ABC


∂M

∂R

+

∑k

i= 1

λi

∂Fi
∂P

− = 0

Althoughbracedbeamsarestillfoundinmodernlightaircraftintheformofbracedwingstructures,
amuchmorecommonstructuralcomponentistheringframe.Theroleofthisparticularcomponentis
discussedindetailinChapter11;itisthereforesufficientforthemomenttosaythatringframesform
thebasicshapeofsemimonocoquefuselagesreactingshearloadsfromthefuselageskins,pointloads
fromwingsparattachments,anddistributedloadsfromfloorbeams.Usuallyaringistwo-dimensional,
supportingloadsappliedinitsownplane.Ouranalysisislimitedtothetwo-dimensionalcase.

Free download pdf