Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

136 CHAPTER 5 Energy Methods


Fig.5.17


Determination of bending moment distribution in an antisymmetrical fuselage frame.


carriedbyeachpartoftheframeatthejunctionwiththestraightmember.Deformationsonlydueto
bendingstrainsneedbetakenintoaccount.


Theloadingisantisymmetricalsothattherearenobendingmomentsornormalforcesontheplane
ofantisymmetry;thereremainthreeshearloads:SA,SD,andSC,asshowninFig.5.17(b).Thetotal
complementaryenergyofthehalf-frameisthen(neglectingshearstrains)


C=


half-frame

∫M

0

dθdM−M 0 αB−

M 0

r

(^) B (i)
whereαBand (^) BaretherotationanddeflectionoftheframeatBcausedbytheappliedmomentM 0 and
concentratedloadM 0 /r,respectively.Fromantisymmetry,thereisnodeflectionatA,D,orCsothat
SA,SD,andSCmakenocontributiontothetotalcomplementaryenergy.Inaddition,overallequilibrium
ofthehalf-framegives


SA+SD+SC=

M 0

r

(ii)

Assigning stationary values to the total complementary energy and considering the half-frame only,
wehave


∂C
∂SA

=


half-frame


∂M

∂SA

= 0

and


∂C
∂SD

=


half-frame


∂M

∂SD

= 0
Free download pdf