138 CHAPTER 5 Energy Methods
Fig.5.18
Distribution of bending moment in frame of Example 5.6.
Infact,thequestionofwhetherastructurepossesseslinearornonlinearcharacteristicsarisesonly
after the initial step of writing down expressions for the total potential or complementary energies.
However,agreatnumberofstructuresarelinearlyelasticandpossessuniquepropertieswhichenable
solutions,insomecases,tobemoreeasilyobtained.Theremainderofthischapterisdevotedtothese
methods.
5.5 UnitLoadMethod...................................................................................
InSection5.3,wediscussedthedummyorfictitiousloadmethodofobtainingdeflectionsofstructures.
Foralinearlyelasticstructure,themethodmaybestreamlinedasfollows.Considertheframeworkof
Fig.5.3inwhichwerequire,say,tofindtheverticaldeflectionofthepointC.Followingtheprocedure
ofSection5.3,wewouldplaceaverticaldummyloadPfatCandwritedownthetotalcomplementary
energyoftheframework,thatis,
C=
∑ki= 1∫Fi0λidFi−∑nr= 1(^) rPr (seeEq.(5.9))
ForastationaryvalueofC,
∂C
∂Pf=
∑ki= 1λi∂Fi
∂Pf− (^) C= 0 (5.18)