150 CHAPTER 5 Energy Methods
Fig.5.25
Approximate determination of beam deflection using total potential energy.
inwhichvBisthedisplacementatthemidspanpoint.FromEq.(i),weseethatv=0whenz=0andz=L
and thatv=vBwhenz=L/2. Also dv/dz=0whenz=L/2 so that the displacement function satisfies
theboundaryconditionsofthebeam.
Thestrainenergy,U,duetobendingofthebeamisgiveninStructuralandStressAnalysis[Ref.3]
U=
∫
L
M^2
2 EI
dz (ii)
Also,
M=−EI
d^2 v
dz^2
(seeChapter15) (iii)
SubstitutinginEq.(iii)forvfromEq.(i)andforMinEq.(ii)from(iii)
U=
EI
2
∫L
0
v^2 Bπ^4
L^4
sin^2
πz
L
dz
whichgives
U=
π^4 EIvB^2
4 L^3
TheTPEofthebeamisthengivenby
TPE=U+V=
π^4 EIv^2 B
4 L^3
−WvB
Then,fromtheprincipleofthestationaryvalueoftheTPE,
∂(U+V)
∂vB
=
π^4 EIvB
2 L^3