150 CHAPTER 5 Energy Methods
Fig.5.25
Approximate determination of beam deflection using total potential energy.
inwhichvBisthedisplacementatthemidspanpoint.FromEq.(i),weseethatv=0whenz=0andz=L
and thatv=vBwhenz=L/2. Also dv/dz=0whenz=L/2 so that the displacement function satisfies
theboundaryconditionsofthebeam.
Thestrainenergy,U,duetobendingofthebeamisgiveninStructuralandStressAnalysis[Ref.3]
U=
∫
LM^2
2 EI
dz (ii)Also,
M=−EI
d^2 v
dz^2(seeChapter15) (iii)SubstitutinginEq.(iii)forvfromEq.(i)andforMinEq.(ii)from(iii)
U=
EI
2
∫L
0v^2 Bπ^4
L^4sin^2πz
Ldzwhichgives
U=
π^4 EIvB^2
4 L^3TheTPEofthebeamisthengivenby
TPE=U+V=
π^4 EIv^2 B
4 L^3−WvBThen,fromtheprincipleofthestationaryvalueoftheTPE,
∂(U+V)
∂vB=
π^4 EIvB
2 L^3