Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

152 CHAPTER 5 Energy Methods


Fig.5.26


Linearly elastic body subjected to loadsP 1 ,P 2 ,P 3 ,...,Pn.


thecompletesystemofloadsarethen


1 =a 11 P 1 +a 12 P 2 +a 13 P 3 +···+a 1 nPn
2 =a 21 P 1 +a 22 P 2 +a 23 P 3 +···+a 2 nPn
3 =a 31 P 1 +a 32 P 2 +a 33 P 3 +···+a 3 nPn
..
.

(^) n=an 1 P 1 +an 2 P 2 +an 3 P 3 +···+annPn



⎪⎪

⎪⎪

⎪⎬

⎪⎪

⎪⎪

⎪⎭

(5.25)

or,inmatrixform



⎪⎪
⎪⎪
⎪⎨

⎪⎪
⎪⎪⎪

(^1)
(^2)
(^3)
..
.
(^) n



⎪⎪

⎪⎪

⎪⎬

⎪⎪

⎪⎪⎪


=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

a 11 a 12 a 13 ... a 1 n
a 21 a 22 a 23 ... a 2 n
a 31 a 32 a 33 ... a 3 n
..
.

..

.

..

.

..

.

an 1 an 2 an 3 ... ann

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪⎪


P 1

P 2

P 3

..

.

Pn


⎪⎪

⎪⎪

⎪⎬

⎪⎪

⎪⎪⎪


whichmaybewritteninshorthandmatrixnotationas


{ }=[A]{P}

SupposenowthatanelasticbodyissubjectedtoagraduallyappliedforceP 1 atapoint1,andthen,
whileP 1 remainsinposition,aforceP 2 isgraduallyappliedatanotherpoint2.Thetotalstrainenergy
Uofthebodyisgivenby


U 1 =

P 1

2

(a 11 P 1 )+

P 2

2

(a 22 P 2 )+P 1 (a 12 P 2 ) (5.26)

Thethirdtermontheright-handsideofEq.(5.26)resultsfromtheadditionalworkdonebyP 1 asitis
displacedthroughafurtherdistancea 12 P 2 bytheactionofP 2 .Ifwenowremovetheloadsandapply

Free download pdf