6.2 Stiffness Matrix for an Elastic Spring 171
where[K]isasymmetricmatrixoftheform
[K]=
⎡
⎢
⎢
⎣
k 11 k 12 ··· k 1 n
k 21 k 22 ··· k 2 n
··· ··· ··· ···
kn 1 kn 2 ··· knn
⎤
⎥
⎥
⎦ (6.2)
Theelementkij(i.e.,theelementlocatedinrowiandincolumnj)isknownasthestiffnessinfluence
coefficient(notekij=kji). Once the stiffness matrix [K] has been formed, the complete solution to a
problem follows from routine numerical calculations that are carried out, in most practical cases, by
computer.
6.2 StiffnessMatrixforanElasticSpring.............................................................
Theformationofthestiffnessmatrix[K]isthemostcrucialstepinthematrixsolutionofanystructural
problem.Weshallshowinthesubsequentworkhowthestiffnessmatrixforacompletestructuremay
be built up from a consideration of the stiffness of its individual elements. First, however, we shall
investigatetheformationof[K]forasimplespringelementwhichexhibitsmanyofthecharacteristics
ofanactualstructuralmember.
ThespringofstiffnesskshowninFig.6.1isalignedwiththexaxisandsupportsforcesFx,1and
Fx,2atitsnodes1and2wherethedisplacementsareu 1 andu 2 .Webuildupthestiffnessmatrixfor
thissimplecasebyexaminingdifferentstatesofnodaldisplacement.First,weassumethatnode2is
preventedfrommovingsuchthatu 1 =u 1 andu 2 =0.Hence,
Fx,1=ku 1
andfromequilibrium,weseethat
Fx,2=−Fx,1=−ku 1 (6.3)
whichindicatesthatFx,2hasbecomeareactiveforceintheoppositedirectiontoFx,1.Second,wetake
thereversecasewhereu 1 =0andu 2 =u 2 andobtain
Fx,2=ku 2 =−Fx,1 (6.4)
Fig.6.1
Determination of stiffness matrix for a single spring.