Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

180 CHAPTER 6 Matrix Methods


directioncosinesλandμtakedifferentvaluesforeachofthethreemembers,sorememberingthatthe
angleθismeasuredanticlockwisefromthepositivedirectionofthexaxis,wehavethefollowing:


Member θ λ μ
1–2 0 1 0
1–3 90 0 1
2–3 135 −1/

21/

2

Thememberstiffnessmatricesaretherefore


[K 12 ]=

AE

L





10 − 10

00 00

−10 10

00 00




⎦ [K^13 ]=

AE

L





0000

010 − 1

0000

0 −10 1





[K 23 ]=

AE


2 L

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

1
2 −

1
2 −

1
2

1
2
−^121212 −^12

−^121212 −^12
1
2 −

1
2 −

1
2

1
2

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

(i)

Thenextstageistoaddthememberstiffnessmatricestoobtainthestiffnessmatrixforthecomplete
framework.Sincetherearesixpossiblenodalforcesproducingsixpossiblenodaldisplacements,the
complete stiffness matrix is of the order 6×6. Although the addition is not difficult in this simple
problem,caremustbetaken,whensolvingmorecomplexstructurestoensurethatthematrixelements
areplacedinthecorrectpositioninthecompletestiffnessmatrix.Thismaybeachievedbyexpanding
eachmemberstiffnessmatrixtotheorderofthecompletestiffnessmatrixbyinsertingappropriaterows
andcolumnsofzeros.Suchamethodis,however,timeandspaceconsuming.Analternativeprocedure
issuggestedhere.ThecompletestiffnessmatrixisoftheformshowninEq.(ii)

⎪⎪
⎪⎪
⎪⎪
⎪⎪

⎪⎪⎪
⎪⎪
⎪⎪
⎪⎩


Fx,1
Fy,1
Fx,2
Fy,2
Fx,3
Fy,3


⎪⎪

⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪

⎪⎪


=




k 11 k 12 k 13
k 21 k 22 k 23
k 31 k 32 k 33





⎪⎪

⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪

⎪⎪


u 1
v 1
u 2
v 2
u 3
v 3


⎪⎪

⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪

⎪⎪


(ii)

Thecompletestiffnessmatrixhasbeendividedintoanumberofsubmatricesinwhich[k 11 ]isa2× 2
matrixrelatingthenodalforcesFx,1,Fy,1tothenodaldisplacementsu 1 ,v 1 ,andsoon.Itisasimple
mattertodivideeachmemberstiffnessmatrixintosubmatricesoftheform[k 11 ],asshowninEqs.(iii).
AllthatremainsistoinserteachsubmatrixintoitscorrectpositioninEq.(ii),addingthematrixelements

Free download pdf