Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

186 CHAPTER 6 Matrix Methods


Fig.6.6


Forces and moments on a beam element.


vi,vj,andθi,θj.Wedonotincludeaxialforceshere,sincetheireffectshavealreadybeendetermined
inourinvestigationofpin-jointedframeworks.
The stiffness matrix [Kij] may be built up by considering various deflected states for the
beamandsuperimposingtheresults,aswedidinitiallyforthespringassembliesshowninFigs.6.1and
6.2,oritmaybewrittendowndirectlyfromthewell-knownbeamslope–deflectionequations[Ref.3].
Weshalladoptthelatterprocedure.Fromslope–deflectiontheory,wehave


Mi=−

6 EI

L^2

vi+

4 EI

L

θi+

6 EI

L^2

vj+

2 EI

L

θj (6.39)

and


Mj=−

6 EI

L^2

vi+

2 EI

L

θi+

6 EI

L^2

vj+

4 EI

L

θj (6.40)

Also,consideringverticalequilibrium,weobtain


Fy,i+Fy,j= 0 (6.41)

andfrommomentequilibriumaboutnodej,wehave


Fy,iL+Mi+Mj= 0 (6.42)

Hence,thesolutionofEqs.(6.39)through(6.42)gives


−Fy,i=Fy,j=−

12 EI

L^3

vi+

6 EI

L^2

θi+

12 EI

L^3

vj+

6 EI

L^2

θj (6.43)

ExpressingEqs.(6.39),(6.40),and(6.43)inmatrixformyields



⎪⎪
⎪⎨

⎪⎪
⎪⎩

Fy,i
Mi
Fy,j
Mj


⎪⎪

⎪⎬

⎪⎪

⎪⎭

=EI






12 /L^3 − 6 /L^2 − 12 /L^3 − 6 /L^2

− 6 /L^24 /L 6 /L^22 /L

− 12 /L^36 /L^212 /L^36 /L^2

− 6 /L^22 /L 6 /L^24 /L







⎪⎪

⎪⎨

⎪⎪

⎪⎩

vi
θi
vj
θj


⎪⎪

⎪⎬

⎪⎪

⎪⎭

(6.44)
Free download pdf