Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

194 CHAPTER 6 Matrix Methods


Thesolutionprocedureisidenticalinoutlinetothatdescribedintheprevioussectionsforskeletal
structures;thedifferenceslieintheidealizationofthestructureintofiniteelementsandthecalculation
ofthestiffnessmatrixforeachelement.Thelatterprocedure,whichingeneraltermsisapplicableto
all finite elements, may be specified in a number of distinct steps. We shall illustrate the method by
establishingthestiffnessmatrixforthesimpleone-dimensionalbeamelementofFig.6.6forwhichwe
havealreadyderivedthestiffnessmatrixusingslope–deflection.


6.8.1 Stiffness Matrix for a Beam Element


Thefirststepistochooseasuitablecoordinateandnodenumberingsystemfortheelementanddefine
itsnodaldisplacementvector{δe}andnodalloadvector{Fe}.Useismadehereofthesuperscripteto
denoteelementvectors,since,ingeneral,afiniteelementpossessesmorethantwonodes.Again,we
arenotconcernedwithaxialorsheardisplacementssothatforthebeamelementofFig.6.6,wehave


{δe}=


⎪⎪


⎪⎪


vi
θi
vj
θj


⎪⎪


⎪⎪


{Fe}=


⎪⎪


⎪⎪


Fy,i
Mi
Fy,j
Mj


⎪⎪


⎪⎪


Sinceeachofthesevectorscontainsfourterms,theelementstiffnessmatrix[Ke]willbeoforder4×4.
Inthesecondstep,weselectadisplacementfunctionwhichuniquelydefinesthedisplacementof
all points in the beam element in terms of the nodal displacements. This displacement function may
betakenasapolynomialwhichmustincludefourarbitraryconstantscorrespondingtothefournodal
degreesoffreedomoftheelement.Thus,


v(x)=α 1 +α 2 x+α 3 x^2 +α 4 x^3 (6.54)

Equation(6.54)isofthesameformasthatderivedfromelementarybendingtheoryforabeamsubjected
toconcentratedloadsandmomentsandmaybewritteninmatrixformas


{v(x)}=

[

1 xx^2 x^3

]


⎪⎪


⎪⎪


α 1
α 2
α 3
α 4


⎪⎪


⎪⎪


orinabbreviatedformas


{v(x)}=[f(x)]{α} (6.55)

Therotationθatanysectionofthebeamelementisgivenby∂v/∂x;therefore,


θ=α 2 + 2 α 3 x+ 3 α 4 x^2 (6.56)
Free download pdf