Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

198 CHAPTER 6 Matrix Methods


Hence,


[Ke]=

∫L

0

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣


6

L^2

+

12 x
L^3

4

L

+

6 x
L^2
6
L^2


12 x
L^3

2

L

+

6 x
L^2

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

[EI]

[


6

L^2

+

12 x
L^3


4

L

+

6 x
L^2

6

L^2


12 x
L^3


2

L

+

6 x
L^2

]

dx

whichgives


[Ke]=

EI

L^3





12 − 6 L − 12 − 6 L

− 6 L 4 L^26 L 2 L^2

−12 6L 12 6L

− 6 L 2 L^26 L 4 L^2




⎦ (6.77)

Equation(6.77)isidenticaltothestiffnessmatrix(seeEq.(6.44))fortheuniformbeamofFig.6.6.
Finally,instepseven,werelatetheinternal“stresses,”{σ},intheelementtothenodaldisplacements
{δe}.ThishasinfactbeenachievedtosomeextentinEq.(6.69),namely


{σ}=[D][C][A−^1 ]{δe}

or,fromthepreceding,


{σ}=[D][B]{δe} (6.78)

Equation(6.78)isusuallywrittenas


{σ}=[H]{δe} (6.79)

inwhich[H]=[D][B]isthestress–displacementmatrix.Forthisparticularbeamelement,[D]=EI
and[B]isdefinedinEq.(6.76).Thus,


[H]=EI

[


6

L^2

+

12 x
L^3


4

L

+

6 x
L^2

6

L^2


12 x
L^3


2

L

+

6 x
L^2

]

(6.80)

6.8.2 Stiffness Matrix for a Triangular Finite Element


Triangular finite elements are used in the solution of plane stress and plane strain problems. Their
advantageoverothershapedelementsliesintheirabilitytorepresentirregularshapesandboundaries
withrelativesimplicity.
In the derivation of the stiffness matrix, we shall adopt the step-by-step procedure of the previ-
ousexample.Initially,therefore,wechooseasuitablecoordinateandnodenumberingsystemforthe
elementanddefineitsnodaldisplacementandnodalforcevectors.Figure6.13showsatriangularele-
ment referred to axes Oxyand having nodesi,j,andklettered counterclockwise. It may be shown

Free download pdf