6.8 Finite Element Method for Continuum Structures 201FromEqs.(1.18)and(1.20),weseethat
εx=∂u
∂xεy=∂v
∂yγxy=∂u
∂y+
∂v
∂x(6.88)
SubstitutingforuandvinEqs.(6.88)fromEqs.(6.82)gives
εx=α 2
εy=α 6
γxy=α 3 +α 5orinmatrixform
{ε}=⎡
⎣
010000
000001
001010
⎤
⎦
⎧
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪⎪
⎪⎩
α 1
α 2
α 3
α 4
α 5
α 6⎫
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪⎪
⎪⎭
(6.89)
whichisoftheform
{ε}=[C]{α} (seeEqs.(6.64)and(6.65))Substitutingfor{α}(=[A−^1 ]{δe})weobtain
{ε}=[C][A−^1 ]{δe} (comparewithEq.(6.66))or
{ε}=[B]{δe} (seeEq.(6.76))where[C]isdefinedinEq.(6.89).
In step five, we relate the internal stresses{σ}to the strain{ε}and hence, using step four, to the
nodaldisplacements{δe}.Forplanestressproblems,
{σ}=⎧
⎨
⎩
σx
σy
τxy⎫
⎬
⎭
(6.90)
and
εx =σx
E−
νσy
E
εy =σy
E−
νσx
Eγxy=τxy
G=
2 ( 1 +ν)
Eτxy⎫
⎪⎪
⎪⎪
⎪⎬
⎪⎪
⎪⎪
⎪⎭
(seeChapter1)