6.8 Finite Element Method for Continuum Structures 209Now,substitutingforα 1 ,α 2 ,...,α 8 inEqs.(6.96),
ui=0.00025−0.000125x−0.00175y−0.000625xyand
vi=−0.001+0.00025x+0.002y−0.00025xyThen,fromEqs.(6.88),
εx=∂u
∂x=−0.000125−0.000625yεy=
∂v
∂y=0.002−0.00025xγxy=∂u
∂y+
∂v
∂x=−0.0015−0.000625x−0.00025yTherefore,atthecenteroftheelement(x=0,y= 0 ),
εx=−0.000125
εy=0.002
γxy=−0.0015sothatfromEqs.(6.92),
σx=E
1 −ν^2(εx+νεy)=200000
1 −0.3^2
(−0.000125+(0.3×0.002))
thatis,
σx=104.4N/mm^2σy=E
1 −ν^2(εy+νεx)=200000
1 −0.3^2
(0.002+(0.3×0.000125))
thatis,
σy=431.3N/mm^2and
τxy=E
1 −ν^2×
1
2
( 1 −ν)γxy=E
2 ( 1 +ν)γxyThus,
τxy=