Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
7.3 Plates Subjected to a Distributed Transverse Load 229

Takingmomentsaboutthexaxis


Mxyδy−

(

Mxy+

∂Mxy
∂x

δx

)

δy−Myδx+

(

My+

∂My
∂y

δy

)

δx


(

Qy+

∂Qy
∂y

δy

)

δxδy+Qx

δy^2
2


(

Qx+

∂Qx
∂x

δx

)

δy^2
2

−qδx

δy^2
2

= 0

Simplifyingthisequationandneglectingsmallquantitiesofahigherorderthanthoseretainedgive


∂Mxy
∂x


∂My
∂y

+Qy= 0 (7.17)

Similarly,takingmomentsabouttheyaxis,wehave


∂Mxy
∂y


∂Mx
∂x

+Qx= 0 (7.18)

SubstitutinginEq.(7.16)forQxandQyfromEqs.(7.18)and(7.17),weobtain


∂^2 Mx
∂x^2


∂^2 Mxy
∂x∂y

+

∂^2 My
∂y^2


∂^2 Mxy
∂x∂y

=−q

or


∂^2 Mx
∂x^2

− 2

∂^2 Mxy
∂x∂y

+

∂^2 My
∂y^2

=−q (7.19)

ReplacingMx,Mxy,andMyinEq.(7.19)fromEqs.(7.7),(7.14),and(7.8)gives


∂^4 w
∂x^4

+ 2

∂^4 w
∂x^2 ∂y^2

+

∂^4 w
∂y^4

=

q
D

(7.20)

Thisequationmayalsobewrittenas
(
∂^2
∂x^2


+

∂^2

∂y^2

)(

∂^2 w
∂x^2

+

∂^2 w
∂y^2

)

=

q
D

or
(
∂^2
∂x^2


+

∂^2

∂y^2

) 2

w=

q
D

Theoperator(∂^2 /∂x^2 +∂^2 /∂y^2 )isthewell-knownLaplaceoperatorintwodimensionsandissometimes
writtenas∇^2 .Thus,


(∇^2 )^2 w=

q
D
Generally, the transverse distributed loadqis a function ofxandyso that the determination of
thedeflectedformoftheplatereducestoobtainingasolutionofEq.(7.20),whichsatisfiestheknown
boundaryconditionsoftheproblem.ThebendingandtwistingmomentsfollowfromEqs.(7.7),(7.8),

Free download pdf