7.3 Plates Subjected to a Distributed Transverse Load 229Takingmomentsaboutthexaxis
Mxyδy−(
Mxy+∂Mxy
∂xδx)
δy−Myδx+(
My+∂My
∂yδy)
δx−
(
Qy+∂Qy
∂yδy)
δxδy+Qxδy^2
2−
(
Qx+∂Qx
∂xδx)
δy^2
2−qδxδy^2
2= 0
Simplifyingthisequationandneglectingsmallquantitiesofahigherorderthanthoseretainedgive
∂Mxy
∂x−
∂My
∂y+Qy= 0 (7.17)Similarly,takingmomentsabouttheyaxis,wehave
∂Mxy
∂y−
∂Mx
∂x+Qx= 0 (7.18)SubstitutinginEq.(7.16)forQxandQyfromEqs.(7.18)and(7.17),weobtain
∂^2 Mx
∂x^2−
∂^2 Mxy
∂x∂y+
∂^2 My
∂y^2−
∂^2 Mxy
∂x∂y=−qor
∂^2 Mx
∂x^2− 2
∂^2 Mxy
∂x∂y+
∂^2 My
∂y^2=−q (7.19)ReplacingMx,Mxy,andMyinEq.(7.19)fromEqs.(7.7),(7.14),and(7.8)gives
∂^4 w
∂x^4+ 2
∂^4 w
∂x^2 ∂y^2+
∂^4 w
∂y^4=
q
D(7.20)
Thisequationmayalsobewrittenas
(
∂^2
∂x^2
+
∂^2
∂y^2)(
∂^2 w
∂x^2+
∂^2 w
∂y^2)
=
q
Dor
(
∂^2
∂x^2
+
∂^2
∂y^2) 2
w=q
DTheoperator(∂^2 /∂x^2 +∂^2 /∂y^2 )isthewell-knownLaplaceoperatorintwodimensionsandissometimes
writtenas∇^2 .Thus,
(∇^2 )^2 w=q
D
Generally, the transverse distributed loadqis a function ofxandyso that the determination of
thedeflectedformoftheplatereducestoobtainingasolutionofEq.(7.20),whichsatisfiestheknown
boundaryconditionsoftheproblem.ThebendingandtwistingmomentsfollowfromEqs.(7.7),(7.8),