7.3 Plates Subjected to a Distributed Transverse Load 229
Takingmomentsaboutthexaxis
Mxyδy−
(
Mxy+
∂Mxy
∂x
δx
)
δy−Myδx+
(
My+
∂My
∂y
δy
)
δx
−
(
Qy+
∂Qy
∂y
δy
)
δxδy+Qx
δy^2
2
−
(
Qx+
∂Qx
∂x
δx
)
δy^2
2
−qδx
δy^2
2
= 0
Simplifyingthisequationandneglectingsmallquantitiesofahigherorderthanthoseretainedgive
∂Mxy
∂x
−
∂My
∂y
+Qy= 0 (7.17)
Similarly,takingmomentsabouttheyaxis,wehave
∂Mxy
∂y
−
∂Mx
∂x
+Qx= 0 (7.18)
SubstitutinginEq.(7.16)forQxandQyfromEqs.(7.18)and(7.17),weobtain
∂^2 Mx
∂x^2
−
∂^2 Mxy
∂x∂y
+
∂^2 My
∂y^2
−
∂^2 Mxy
∂x∂y
=−q
or
∂^2 Mx
∂x^2
− 2
∂^2 Mxy
∂x∂y
+
∂^2 My
∂y^2
=−q (7.19)
ReplacingMx,Mxy,andMyinEq.(7.19)fromEqs.(7.7),(7.14),and(7.8)gives
∂^4 w
∂x^4
+ 2
∂^4 w
∂x^2 ∂y^2
+
∂^4 w
∂y^4
=
q
D
(7.20)
Thisequationmayalsobewrittenas
(
∂^2
∂x^2
+
∂^2
∂y^2
)(
∂^2 w
∂x^2
+
∂^2 w
∂y^2
)
=
q
D
or
(
∂^2
∂x^2
+
∂^2
∂y^2
) 2
w=
q
D
Theoperator(∂^2 /∂x^2 +∂^2 /∂y^2 )isthewell-knownLaplaceoperatorintwodimensionsandissometimes
writtenas∇^2 .Thus,
(∇^2 )^2 w=
q
D
Generally, the transverse distributed loadqis a function ofxandyso that the determination of
thedeflectedformoftheplatereducestoobtainingasolutionofEq.(7.20),whichsatisfiestheknown
boundaryconditionsoftheproblem.ThebendingandtwistingmomentsfollowfromEqs.(7.7),(7.8),