1.7 Principal Stresses 15Twosolutions,θandθ+π/2,areobtainedfromEq.(1.10)sothattherearetwomutuallyperpen-
dicular planes on which the direct stress is either a maximum or a minimum. Further, by comparing
Eqs. (1.9) and (1.10), it will be observed that these planes correspond to those on which there is no
shearstress.Thedirectstressesontheseplanesarecalledprincipalstresses,andtheplanesthemselves
arecalledprincipalplanes.
FromEq.(1.10),
sin2θ=2 τxy
√
(σx−σy)^2 + 4 τxy^2cos2θ=σx−σy
√
(σx−σy)^2 + 4 τxy^2and
sin2(θ+π/ 2 )=− 2 τxy
√
(σx−σy)^2 + 4 τxy^2cos2(θ+π/ 2 )=−(σx−σy)
√
(σx−σy)^2 + 4 τxy^2RewritingEq.(1.8)as
σn=σx
2( 1 +cos2θ)+σy
2( 1 −cos2θ)+τxysin2θandsubstitutingfor{sin2θ,cos2θ}and{sin2(θ+π/ 2 ),cos2(θ+π/ 2 )}inturngives
σI=σx+σy
2+
1
2
√
(σx−σy)^2 + 4 τxy^2 (1.11)and
σII=σx+σy
2−
1
2
√
(σx−σy)^2 + 4 τxy^2 (1.12)whereσIisthemaximumormajorprincipalstressandσIIistheminimumorminorprincipalstress.
NotethatσIisalgebraicallythegreatestdirectstressatthepoint,whileσIIisalgebraicallytheleast.
Therefore,whenσIIisnegative—thatis,compressive—itispossibleforσIItobenumericallygreater
thanσI.
Themaximumshearstressatthispointinthebodymaybedeterminedinanidenticalmanner.From
Eq.(1.9),
dτ
dθ=(σx−σy)cos2θ+ 2 τxysin2θ= 0giving
tan2θ=−(σx−σy)
2 τxy