1.7 Principal Stresses 15
Twosolutions,θandθ+π/2,areobtainedfromEq.(1.10)sothattherearetwomutuallyperpen-
dicular planes on which the direct stress is either a maximum or a minimum. Further, by comparing
Eqs. (1.9) and (1.10), it will be observed that these planes correspond to those on which there is no
shearstress.Thedirectstressesontheseplanesarecalledprincipalstresses,andtheplanesthemselves
arecalledprincipalplanes.
FromEq.(1.10),
sin2θ=
2 τxy
√
(σx−σy)^2 + 4 τxy^2
cos2θ=
σx−σy
√
(σx−σy)^2 + 4 τxy^2
and
sin2(θ+π/ 2 )=
− 2 τxy
√
(σx−σy)^2 + 4 τxy^2
cos2(θ+π/ 2 )=
−(σx−σy)
√
(σx−σy)^2 + 4 τxy^2
RewritingEq.(1.8)as
σn=
σx
2
( 1 +cos2θ)+
σy
2
( 1 −cos2θ)+τxysin2θ
andsubstitutingfor{sin2θ,cos2θ}and{sin2(θ+π/ 2 ),cos2(θ+π/ 2 )}inturngives
σI=
σx+σy
2
+
1
2
√
(σx−σy)^2 + 4 τxy^2 (1.11)
and
σII=
σx+σy
2
−
1
2
√
(σx−σy)^2 + 4 τxy^2 (1.12)
whereσIisthemaximumormajorprincipalstressandσIIistheminimumorminorprincipalstress.
NotethatσIisalgebraicallythegreatestdirectstressatthepoint,whileσIIisalgebraicallytheleast.
Therefore,whenσIIisnegative—thatis,compressive—itispossibleforσIItobenumericallygreater
thanσI.
Themaximumshearstressatthispointinthebodymaybedeterminedinanidenticalmanner.From
Eq.(1.9),
dτ
dθ
=(σx−σy)cos2θ+ 2 τxysin2θ= 0
giving
tan2θ=−
(σx−σy)
2 τxy